

Welcome to Galyleo’s documentation!

Contents

	GETTING STARTED
	Overview
	Tutorials and Demos

	Reporting an issue

	Frequently Asked Questions

	User Guide
	Launching A Dashboard

	The Galyleo User Interface
	The Top Bar

	The Halo and the Side Bar

	The Context Menu

	Galyleo Data Architecture And Flow
	Tables

	Filters

	Views

	Charts

	Charts as Filters

	Names and Namespaces

	Using Galyleo
	The Galyleo UI

	Sending Tables to the Dashboard

	Adding a Filter

	Creating a View

	Creating a Chart

	The Galyleo Python Client
	Installation

	License

	Galyleo Table

	JupyterLab Client

	Galyleo Exceptions

	Galyleo Constants

	The Galyleo Interchange Format
	Overall Structure

	Morphic Properties

	Tables

	Filters

	Views

	Charts

	Morphs

Indices and tables

	Index

	Module Index

	Search Page

 [image: _images/galyleo-logo.png]

GETTING STARTED

Overview

Galyleo is a package for the drag-and-drop design and publication of interactive dashboards driven by Jupyter Notebooks. It is available as an extension to JupyterLab, and is also available for other Jupyter enviroments or other programs. A similar dashboard can be found here: elections [https://editor.engagelively.com/lively.freezer/frozenParts/rick/US_Presidential_Election/index.html].

This dashboard is designed entirely in Galyleo:

[image: _images/FullDashboard.png]
Galyleo was designed to fit seamlessly into the Jupyter workflow. A Galyleo document is stored on the Jupyter Hub’s storage system, and the Galyleo Editor is simply another tab in a standard JupyterLab environment. In other words, it is simply another tool in JupyterLab to complement the Notebook environment.

Galileo, of course, was the inventor of the telescope and the person who first say Jupiter’s moons; we are a visualization solution and we hope that our users will use our technology to make profound discoveries.

Tutorials and Demos

A number of tutorial and example projects can be found at: Galyleo Examples [https://github.com/engageLively/galyleo-examples].

Reporting an issue

Please use the bug-reporting button on the Galyleo toolbar to report an issue to us, or write galyleo_support@engagelively.com

Frequently Asked Questions

	Is Galyleo free and open-source?

Yes. Galyleo is released under a BSD 3-clause license.

	Can I use Galyleo with a Notebook using an R, Julia, or other kernel, or must I use Python?

The connection between the dashboard and the kernel is given by the Galyleo client, which is currently a Python module. So if the kernel can use Python modules, it can be used today. The Galyleo module is very simple, so we expect to implement it in other languages. Of course, it is also open-source, and the protocol is documented; so others are free to implement this as well.

	Can I use other editors besides the Galyleo editor to edit my dashboard?

Yes. The dashboard’s disk and wire format is a JSON document, and the format is specified in the interchange format section.

	What’s the underlying technology for the editor?

The underlying technology is lively.next, an MIT-licensed environment for developing browser-hosted graphical, interactive applications. You can find its repo here: Lively Next: [https://github.com/LivelyKernel/lively.next]

	Can I publish my dashboards to the web, or on my local intranet?

We’ve developed, and are in beta, with a web application which takes the URL for a Galyleo Dashboard document as the parameter dashboard and renders the document in the browser. The page is at https://galyleobeta.engageLively.com/public/galyleo/index.html. That page can be served from any convenient web server, on the web or on an intranet. So publication is as easy as storing the dashboard file on any resource that has an URL (e.g., in a github repo, or for that matter Google Drive with the appropriate permissions).

Following that, on our roadmap is a feature which will drop a complete web page as a directory into your JupyterLab directory, and from there you can export it to any convenient web page.

	What browsers are required to run Galyleo Studio?

We’ve tested it on Chrome, Firefox, Edge, and Safari. We believe that a keybnoard and mouse or touchpad are required to get the best use out of Galyleo Studio, so we recommend the use of a computer or netbook to build dashboards. Dashboards can be viewed on any modern browser on any device.

 [image: _images/galyleo-logo.png]

User Guide

Launching A Dashboard

A new Galyleo Dashboard can be launched from the JupyterLab launcher or from the File>New menu:

[image: _images/new_dashboard.png]
An existing dashboard is saved as a .gd.json file, and is denoted with the Galyleo star logo:

[image: _images/open.png]
It can be opened in the usual way, with a double-click.

The Galyleo User Interface

The Galyleo User interface consists of three components: the top bar, the side bar, and the Halo and Context Menu. We discuss each of these in turn. The mission of the Top Bar is to switch between global modes (interacting and selecting) and added non-chart elements (shapes, images, and text) to the dashboard. The Halo and Side Bar is where individual objects are positioned and configured: where shape and text properties are set, borders defined, and images chosen. The Halo permits the copying, deletion, resizing, and rotation rotation, of objects front-to-back. The Context Menu, brought up by a right-click on the object, permits its reordering.

The Top Bar

The top bar controls are in the top left of the dashboard. They are primarily used to choose between selection mode (when the user is designing the dashboard) and interaction mode (when the user is interacting with the dashboard, e.g, manipulating a slider). The practical difference is that when the user is in interaction mode (the arrow is highlighted) a Halo appears over the clicked item and the sidebar is shown; when in interaction mode (the hand is selected) the object is manipulated on click.
When Text (the A) is selected, a user click brings up a text box. When a shape is selected (one of Rectangle, Ellipse, Image, or Label) the appropriate shape is drawn in response to a user click.
The last item on the top bar is a lifesaver icon, which brings up a bug-report dialog.

[image: _images/topbar.png]

The Halo and the Side Bar

The Halo and the Side Bar are used to configure an object when it’s created, and can also be used to configure physical properties of charts and filters. The Halo automatically appears when an object is clicked on and Selection mode is enabled (the arrow icon in the top bar. The side bar automatically appears when a shape or text is created, or when the knob in the middle of the sidebar is clicked.

[image: _images/halo_sidebar.png]
The Halo shows control points and tools around the selected object. The eight control points in the inner halo are used to change the width and height of the object. The tool in the bottom-left corner is used to rotate the object. The cross on the top bar is used to move it. The trash can on the bottom left is used to delete the object.

The Side bar consists of two parts. The top one, which we’ll return to later, manages Tables, Filters, Views, and Charts. The bottom part is used to configure objects. It has three sections, each activated by clicking on the chevron next to the name.

The Shape configurer is shown in the image, with its eight components shown. They are used to configure the fill (color) and opacity of the object, as well as whether the object casts a drop shadow.

[image: _images/color_chooser.png]
The Color Chooser offers two modes to choose the color of an object. The first, found by clicking the left-hand rectangle, brings up a palette of colors to choose from.

[image: _images/color_wheel.png]
The second permits a fine-grained choice. The Hue bar is used to set the area of the rainbow to pick a color from; dragging the dot in the left-hand square gives the user the ability to choose a specific color. The slider at the bottom controls opacity/transparency of the color (as opposed to the object itself). Finally, the text box gives the user the ability to specify an RGB color, entered as six hex digits.

The “Clipmode” menu gives the user the ability to control what happens when the object is too big for its bounding box. The choices are “visible” (overflows), “hidden” (cut off), “scroll” (scrollbars appear at the right and/or bottom of the object, and “auto” – the system chooses.

The position is the x,y coordinate of the top-left corner of the object, where (0,0) is the top-left corner of the dashboard; x increases left-to-right, and y top-to-bottom.

[image: _images/image_url.png]
When an image is selected, a dialog appears at the bottom of the Shape configurer, permitting the user to choose the URL for the image.

[image: _images/borders.png]
The Borders configurer, below the shape configurer, offers the user the ability to control the color, width, and radius of corners, and the type of line that forms the borders (solid, dotted, dashed, ridged, double, groove, or inset). Hidden and none, two other border options, are equivalent to no border.

[image: _images/text_sidebar.png]
The Text controller only appears when a Text item is selected, and it is used to control the textual properties of a text object. These are:

	The font family and weight (fine to extra-bold)

	The font style (bold, italic, underline, hyperlink)

	The font size and color

	Alignment

	Whether and how lines are wrapped (by words, anywhere, only by words (cannot break a word, or by characters)

	Whether the text box size is set by the user or grows and shrinks with the storing

	The padding control gives the spacing between the text boundary and the boundary of the object, in pixels

There are also three buttons, next to the color chooser, which permit a user to copy style (the standard copy icon), paste a copied style (the paste brush), or clear all formatting (the x).

The Context Menu

[image: _images/context_menu.png]
The context menu appears when the object is right-clicked and selection mode is enabled. It controls the ordering of objects, front-to-back.

Galyleo Data Architecture And Flow

The data flow in Galyleo is shown here. Data is produced in a Jupyter Notebook, and then sent to a dashboard via the Galyleo library. The object sent to a dashboard is a Table, which is conceptually a SQL database table – a list of columns, each with a type, and a list of list of rows, which form the Table’s data. The data is then optionally passed through filters. A Filter is a user interface element that selects a value (or range of values) from a column. This can be used to choose subsets of rows from a particular table, to create what we call a View.

A View is a subset of a table; a selection (and, potentially, a reordering) of the columns of a table, and a subset of its rows, chosen by one or more Filters. Static charts can take as input Table; these charts display the same data, independent of user actions. Dynamic charts take as input a View, which shows the data as filtered by the user through user inputs.

[image: _images/dataflow.png]

Tables

A Table is equivalent to a SQL database table – a list of columns, each with a type, and a list of list of rows, which form the Table’s data.* A table has a name, which must be unique among tables and views, a source, a schema, and data.
A schema is a list of records of the form {"name": <name>, "type": <type>}, where <name> is the column name and type is the column type, which is chosen from the set {"number", "string", "boolean", "date", "datetime", "timeofday"}. These are captured in the galyleoconstants library GALYLEO_STRING, GALYLEO_NUMBER, GALYLEO_BOOLEAN, GALYLEO_DATE, GALYLEO_DATETIME, GALYLEO_TIME_OF_DAY.

The Table data is a list of lists, where each list is a row of the table. Each row must meet two conditions:

	The entry in column i must be of the type of schema entry i

	It must have the same length as the schema

Tables are formed using the GalyleoTable class in the galyleo_table Python module.

Here’s a simple example of a Table, which we’ll use throughout this tutorial:

Cereal Example

	name

	mfr

	type

	calories

	fiber

	rating

	100% Bran

	N

	C

	70

	10

	68.402973

	100% Natural Bran

	Q

	C

	120

	2

	33.983679

	All-Bran

	K

	C

	70

	9

	59.425505

	All-Bran with Extra Fiber

	K

	C

	50

	14

	93.704912

	Almond Delight

	R

	C

	110

	1

	34.384843

	Apple Cinnamon Cheerios

	G

	C

	110

	1.5

	29.509541

	Apple Jacks

	K

	C

	110

	1

	33.174094

	Basic 4

	G

	C

	130

	2

	37.038562

	Bran Chex

	R

	C

	90

	4

	49.120253

	Bran Flakes

	P

	C

	90

	5

	53.313813

	Cap’n’Crunch

	Q

	C

	120

	0

	18.042851

	Cheerios

	G

	C

	110

	2

	50.764999

	Cream of Wheat (Quick)

	N

	H

	100

	1

	64.533816

	Maypo

	A

	H

	100

	0

	54.850917

This is a formatted version of the table. The schema is:

[
 {"name": "name", "type": GALYLEO_STRING},
 {"name": "mfr", "type": GALYLEO_STRING},
 {"name": "type", "type": GALYLEO_STRING},
 {"name": "calories", "type": GALYLEO_NUMBER},
 {"name": "fiber", "type": GALYLEO_NUMBER},
 {"name": "rating", "type": GALYLEO_NUMBER}
]

And the first data row is:

["100% Bran","N","C",70,10,68.402973]

Filters

A Filter is a user-interface element that selects rows from tables, based on values from an individual, named column. A Select Filter chooses rows whose value in the named column is equal to the filter’s value. For example, a Select Filter over the type column in our example whose value is “H” would select rows:

	name

	mfr

	type

	calories

	fiber

	rating

	Cream of Wheat (Quick)

	N

	H

	100

	1

	64.533816

	Maypo

	A

	H

	100

	0

	54.850917

A Range filter chooses rows whose value lies between the two values of the filter. For example, a Range Filter over the calories column whose minimum is 50 and whose maximum is 70 would select the rows

	name

	mfr

	type

	calories

	fiber

	rating

	100% Bran

	N

	C

	70

	10

	68.402973

	All-Bran

	K

	C

	70

	9

	59.425505

	All-Bran with Extra Fiber

	K

	C

	50

	14

	93.704912

Range and Select specify the functional properties of filters (whether the filter selects a specific value or all values in a range). The physical properties of a filter are dependent on the functional properties of the filter, the data type of the column, and user experience factors. For example, a spinner and a slider are both Select filters over numeric columns, but are very different widgets. At this writing, the current set of supported filters are:

	Filter

	Filter Type

	Column Type

	List

	Select

	any

	Dropdown

	Select

	any

	Spinner

	Select

	Number

	Slider

	Select

	Number

	Min/Max

	Range

	Number

	Double Slider

	Range

	Number

	Toggle

	Select

	Boolean

Views

A _View_ is a subset of a table; a selection (and, potentially, a reordering) of the columns of a table, and a subset of its rows, chosen by one or more Filters. While a chart can take as input a _Table_, such a chart wouldn’t respond to user inputs (because a user selects the rows he’s interested in by adjusting a Filter, and filters only affect the rows in Views).
A View is chosen with:
- a source table;
- a fixed subset (and potential reordering) of columns
- a set of filters which select the rows of the table. The filters are considered to have acted in sequence, and thus the rows preserved are the logical AND of the applied filters.
For example, suppose we wanted to construct a View with columns name, rating from our table, and had a range filter on column calories and a select filter on column mfr. The View would be:

{
 "table": "cereal",
 "columns": ["name", "rating"],
 "filters": ["mfrFilter", "calorieFilter"]
}

And, if mfrFilter was set to “N” (Nabisco) and calorieFilter to [50, 90], the data in the view would be:

	name

	rating

	100% Bran

	68.402973

Charts

Charts are, well, charts. Each chart takes its input data from a View or a Table. The category, or X axis (place on geocharts, X axis on column charts or line charts, Y axis on bar charts, wedge labels on donut or pie charts) is the first column in the view or table. This is why an important part of constructing a view is reoordering columns.
The current set of Chart types supported by Galyleo are Google Charts; however, we intend to extend these chart types in the near future, to include OpenLayers, Leaflet.js, Chart.js, Cytoscape.js, and others. It is the intent of the Galyleo system that any JavaScript/HTML5-hosted charts be available under Galyleo.

Charts as Filters

One common operation in Dashboards is to use Charts as filters. This enables drill-down and detail operations on particular categories. Consider, for example, a table that gives average rating by manufacturer on the cereals example, where the data is shown on the dashboard as a column chart. What we’d like is to see the detailed rating, by cereal brand, on another chart, filtered by manufacturer, and when the user clicks on the bar for a particular manufacturer on the average-rating chart the detail for that manufacturer is shown on the detail-rating chart.
Or consider the Presidential Election database example; when we click on a state, we see the vote for that state for the chosen year and the voting history for that state.
In both these cases, the chart is being used as a filter; it selects the manufacturer for the rating-detail chart and the state in the vote-history and vote-detail charts.
This is such a common use case that it is made a feature in Galyleo: every chart is a filter. Specifically, it is a select filter on the category column of the View or Table that is input to the chart. As we’ll see below, charts show up in the same UI sections as filters.

Names and Namespaces

References are by name in Galyleo; each object (Table, Filter, View, or Chart) has a name. Since a Chart can take input from a View or a Table, Views and Tables share the same namespace (Data Source) and a Table cannot have the same name as a View. Similarly, since every Chart is also a Filter, Charts and Filters share the same namespace (Data Selectors), and a Chart cannot have the same name as a Filter or another Chart.
Objects in different namespaces can share a name. For example, it’s quite common for a View and a Chart to share a name, when the View is the data source for the Chart and isn’t otherwise used.

	Namespace

	Objects

	Data Source

	Tables, Views

	Data Selector

	Charts, Filters

Using Galyleo

This section covers the library and user interface elements for sending Tables from Jupyter Notebooks to Galyleo Dashboards, and using the Galyleo UI to add Filters, Views, Charts, and explanatory elements (Text, Shapes, and Images) to the Dashboard. The UI for Shapes, Images, and Text was largely covered above, so we’ll focus on tables, filters, views, and charts here.

The Galyleo UI

Key elements of the Galyleo UI can be seen in the Tables section of the sidebar, shown here with annotations.

[image: _images/tables-edit.png]
The tab selectors choose the category of item being viewed. Here, it is the list of Tables (the Tables tab is highlighted in orange). To the right of each Table name is an inspection icon. Clicking on this gives a preview of the selected table in a popup window. Warning: this should be done carefully, since viewing large tables can cause performance issues. Clicking on the “Add Table” button brings up a popup, inviting a load of a Table in intermediate form from an URL.

The sidebar is closed either by clicking on the orange triangle in the center of the sidebar’s left edge, or on the close button on the top right.

Clicking on the pen icon on the top right of the Table list toggles between inspection mode and edit mode.

[image: _images/edit-mode.png]
When in edit mode, clicking on the circle to the left of a table name deletes the circle. Clicking on the pen icon again restores inspection mode.

Every element of the Table UI is present for all classes of element, (Tables, Filters, Views, and Charts). The pen is present in all lists to switch between inspection/configuration mode for all classes, each class has an Add button, and the close-sidebar buttons are always present.

Sending Tables to the Dashboard

The anticipated method of loading a table is to send it from a Notebook. The Galyleo Client document has a detailed description of how to do that. The brief version is to collect the data in a tabular forma, either a list of lists or a Pandas dataframe, create a GalyleoTable from the galyleo.galyleo_table module, load the data into it, create a GalyleoClient from the galyleo.galyleo_client module, and then use the client.send_data_to_dashboard() method to send the data.

send_data_to_dashboard sends data to open dashboards in the JupyterLab editor. Data can be sent to a specific dashboard by naming it in the call to send_data_to_dashboard. Here is a short snippet which sends the cereals data we’ve used above to a dashboard, assuming the file is in cereals.csv:

from galyleo.galyleo_jupyterlab_client import GalyleoClient
from galyleo.galyleo_table import GalyleoTable
from galyleo.galyleoconstants import GALYLEO_STRING, GALYLEO_NUMBER
import csv
f = open('cereals.csv', 'r')
reader = csv.csv_reader(f)
data = [row for row in reader][:1]
table = GalyleoTable('cereals')
schema = [("name", GALYLEO_STRING), ("mfr", GALYLEO_STRING), ("type", GALYLEO_STRING), ("calories", GALYLEO_NUMBER), ("fiber, GALYLEO_NUMBER), ("rating", GALYLEO_NUMBER)]
table.load_from_schema_and_data(schema, data)
client = GalyleoClient()
client.send_data_to_dashboard(table)

Other methods of loading data and schemas can be found in the documentation for the GalyleoTable class.

Adding a Filter

Once tables are in the dashboard, filters can be created and edited. This is done in the Filters tab, found by clicking filters. Once again, there is an Add button below the lower-right corner of the filter list. Click this, and a popup is brought up, permitting the user to create a filter.

[image: _images/filter-create.png]
The filter must have a name, which cannot be the name of another filter or chart. Type this in the input box, and select a widget type from the upper drop-down and a column name from the lower drop-down, then click create. Clicking “Close” closes the dialog without creating a new filter.

Various errors can occur during this process. In particular, Range filters are only valid over numeric columns, and if a mismatched column is selected an error message will appear; the same message appears if a column is not chosen or a widget type is not chosen. An error will display if a name is not entered, or if the name of another filter or chart is chosen.

Once the filter is created, it appears in the top-left corner of the dashboard. The Filter is a physical object, and can be manipulated as with any other physical object on the dashboard, using the Halo and Sidebar as described above. Put the dashboard into selection mode and move the filter as desired.

[image: _images/filter-edit.png]
Clicking on the gear icon beside the name of an existing filter brings up a filter editor, as shown here. The filter editor is very similar to the filter creator; it simply lacks an input for the filter name. Choose column and widget, then Apply Changes to update the filter, or Close to close without update.

Notice the pen icon is at the top right; once again, it is used to switch between inspection and edit modes, and filters are deleted in edit mode just as tables are, and with the same icon.

Note: Using the Halo to delete the Filter from the dashboard has the same effect as deleting it from the filter list.

Creating a View

Creating a View is very similar to creating a Filter, under the Views Tab. Once again, there is an Add button below the lower-right corner of the views list. Click this, and a popup is brought up, permitting the user to create a view.

[image: _images/view-create.png]
The view must have a name, which cannot be the name of another view or table. Type this in the input box, and choose the underlying table from the drop-down, then click create. Clicking “Close” closes the dialog without creating a new view.

An error will display if a name is not entered, or if the name of another view or table is chosen.

Once a View is created, it is immediately added to the View List, and a View editor is brought up.

[image: _images/view-edit-1.png]
The View Editor is also brought up by clicking on the gear icon beside the name of a View. It consists of two panels, a Column Chooser and a Filter Chooser. The Column Chooser chooses the columns for the View, and the Filter Chooser chooses the filters which will be applied to the underlying table to get the rows for the View.

[image: _images/view-column-move.png]
Since column order is important for a View, there is a column-order mode. It is toggled by choosing the pen icon above the Columns list. When it is toggled, the icons beside the column names change to three horizontal bars and the mouse changes to a grab icon. The columns can then be dragged into order with the mouse. Note that while all columns are displayed, only the order of selected columns are important.

As with tables and filters, views can be deleted using the pen icon above the view list to switch to edit mode, then deleting views in the same way tables and filters are deleted.

Creating a Chart

Creating a Chart is very similar to creating a View, under the Charts Tab. Once again, there is an Add button below the lower-right corner of the chart list. Click this, and a popup is brought up, permitting the user to create a chart.

[image: _images/chart-create.png]
The chart must have a name, which cannot be the name of another chart or filter. Type this in the input box, and choose the view or table to use as a data source from the drop-down, then click create. Clicking “Close” closes the dialog without creating a new chart.

An error will display if a name is not entered, or if the name of another filter or chart is chosen.

Once a chart is created, it is immediately added to the chart List, the chart is brought up as a table on the dashboard, and the Chart Editor pops up.

[image: _images/chart-edit-1.png]
The Chart Editor is also brought up by clicking on the gear icon beside the name of a Chart.

Once the Chart Editor pops up (it is the standard Google Chart Editor), choose the chart type either from the recommended charts on the start page, or click the Charts tab and then choose the chart type on the charts page.

[image: _images/chart-edit-2.png]
Then click customize and choose chart options. We recommend that you not choose a title for the chart; Galyleo automatically generates a title based on the names of the columns chosen and the values of the filters used to drive the chart.

[image: _images/chart-edit-3.png]
Once you’re happy with the chart, click OK

[image: _images/chart-final.png]
Important note. When choosing Line or Area Charts, using the first column as X-axis labels (rather than a data series) must be explicitly chosen by checking “Use 1st Column as Labels” on the Start tab in the editor.

[image: _images/chart-first-column.png]
As with tables, filters, and views, charts can be deleted using the pen icon above the chart list to switch to edit mode, then deleting charts in the same way tables, filters and charts are deleted. And, as with filters, deleting the physical chart with the Halo has the same effect as deleting charts from the chart list.

 [image: _images/galyleo-logo.png]

The Galyleo Python Client

The Galyleo Python client is a module designed to convert Python structures into Galyleo Tables, and send them to dashboards for use with the Galyleo editor. It consists of four components:

	galyleo.galyleo_table: classes and methods to create GalyleoTables, convert Python data structures into them, and produce and read JSON versions of the tables.

	galyleo.galyleo_jupyterlab_client: classes and methods to send Galyleo Tables to Galyleo dashboards runniung under JupyterLab clients

	galyleo.galyleo_constants: Symbolic constants used by these packages and the code which uses them

	galyleo.galyleo_exceptions; Exceptions thrown by the package

Installation

The galyleo module can be installed using pip:

pip install --extra-index-url https://pypi.engagelively.com galyleo

When the module is more thoroughly tested, it will be put on the standard pypi servers.

License

galyleo is released under a standard BSD 3-Clause licence by engageLively

Galyleo Table

	
class galyleo.galyleo_table.GalyleoTable(name: str)

	A Galyleo Dashboard Table. Used to create a Galyleo Dashboard Table from any of a number of sources, and then generate an object that is suitable
for storage (as a JSON file). A GalyleoTable is very similar to a Google Visualization data table, and can be
converted to a Google Visualization Data Table on either the Python or the JavaScript side.
Convenience routines provided here to import data from pandas, and json format.

	
aggregate_by(aggregate_column_names, new_column_name='count', new_table_name=None)

	Create a new table by aggregating over multiple columns. The resulting table
contains the aggregate column names and the new column name, and for each
unique combination of values among the aggregate column names, the count of rows in this
table with that unique combination of values.
The new table will have name new_table_name
Throws an InvalidDataException if aggregate_column_names is not a subset of the names in self.schema

	Args:
	aggregate_column_names: names of the columns to aggregate over
new_column_name: name of the column for the aggregate count. Defaults to count
new_table_name: name of the new table. If omitted, defaults to None, in which case a name will be generated

	Returns:
	A new table with name new_table_name, or a generated name if new_table_name == None

	Throws:
	InvalidDataException if one of the column names is missing

	
as_dictionary()

	Return the form of the table as a dictionary. This is a dictionary
of the form:
{“name”: <table_name>,”table”: <table_struct>}
where table_struct is of the form:
{“columns”: [<list of schema records],”rows”: [<list of rows of the table>]}

A schema record is a record of the form:
{“name”: < column_name>, “type”: <column_type}, where type is one of the
Galyleo types (GALYLEO_STRING, GALYLEO_NUMBER, GALYLEO_BOOLEAN,
GALYLEO_DATE, GALYLEO_DATETIME, GALYLEO_TIME_OF_DAY). All of these are defined
in galyleo_constants.

	Args:
	None

	Returns:
	{“name”: <table_name>, “table”: {“columns”: <list of schema records], “rows”: [<list of rows of the table>]}}

	
equal(table, names_must_match=False)

	Test to see if this table is equal to another table, passed as
an argument. Two tables are equal if their schemas are the same
length and column names and types match, and if the data is the same,
and in the same order. If names_must_match == True (default is False),
then the names must also match

	Args:
	table (GalyleoTable): table to be checked for equality
names_must_match (bool): (default False) if True, table names must also match

	Returns:
	True if equal, False otherwise

	
filter_by_function(column_name, function, new_table_name, column_types={})

	Create a new table, with name table_name, with rows such that
function(row[column_name]) == True. The new table will have
columns {self.columns} - {column_name}, same types, and same order
Throws an InvalidDataException if:
1. new_table_name is None or not a string
2. column_name is not a name of an existing column
3. if column_types is not empty, the type of the selected column doesn’t match one of the allowed types

	Args:
	column_name: the column to filter by
function: a Boolean function with a single argument of the type of columns[column_name]
new_table_name: name of the new table
column_types: set of the allowed column types; if empty, any type is permitted

	Returns:
	A table with column[column_name] missing and filtered

	Throws:
	InvalidDataException if new_table_name is empty, column_name is not a name of an existing column, or the type of column_name isn’t in column_types (if column_types is non-empty)

	
filter_equal(column_name, value, new_table_name, column_types)

	A convenience method over filter_by_function. This is identical to
filter_by_function(column_name, lambda x: x == value, new_table_name, column_types)

	Args:
	column_name: the column to filter by
value: the value to march for equality
new_table_name: name of the new table
column_types: set of the allowed column types; if empty, any type is permitted

	Returns:
	
A table with column[column_name] missing and filtered

	Throws:
	InvalidDataException if new_table_name is empty, column_name is not a name of an existing column, or the type of column_name isn’t in column_types (if column_types is non-empty)

	
filter_range(column_name, range_as_tuple, new_table_name, column_types)

	A convenience method over filter_by_function. This is identical to
filter_by_function(column_name, lambda x: x >= range_as_tuple[0], x <= range_as_tuple[1], new_table_name, column_types)

	Args:
	column_name: the column to filter by
range_as_tupe: the tuple representing the range
new_table_name: name of the new table
column_types: set of the allowed column types; if empty, any type is permitted

	Returns:
	
A table with column[column_name] missing and filtered

	Throws:
	InvalidDataException if new_table_name is empty, column_name is not a name of an existing column, or the type of column_name isn’t in column_types (if column_types is non-empty), if len(range_as_tuple) != 2

	
from_json(json_form, overwrite_name=True)

	Load the table from a JSON string, of the form produced by toJSON(). Note
that if the overwrite_name parameter = True (the default), this will also
overwrite the table name.

Throws InvalidDataException id json_form is malformed

	Args:
	json_form: A JSON form of the Dictionary

	Returns:
	None

	Throws:
	InvalidDataException if json_form is malformed

	
load_from_dataframe(dataframe, schema=None)

	Load from a Pandas Dataframe. The schema is given in the optional second parameter,
as a list of records {“name”: <name>, “type”: <type>}, where type is a Galyleo type. (GALYLEO_STRING, GALYLEO_NUMBER, GALYLEO_BOOLEAN,
GALYLEO_DATE, GALYLEO_DATETIME, GALYLEO_TIME_OF_DAY).
If the second parameter is not present, the schema is derived from the name and
column types of the dataframe, and each row of the dataframe becomes a row
of the table.

Args:

dataframe (pandas dataframe): the pandas dataframe to load from
schema (list of dictionaries): if present, the schema in list of dictionary form; each dictionary is of the form {“name”: <column name>, “type”: <column type>}

	
load_from_dictionary(dict)

	load data from a dictionary of the form: {“columns”: [<list of schema records], “rows”: [<list of rows of the table>]}

A schema record is a record of the form:
{“name”: < column_name>, “type”: <column_type}, where type is one of the
Galyleo types (GALYLEO_STRING, GALYLEO_NUMBER, GALYLEO_BOOLEAN,
GALYLEO_DATE, GALYLEO_DATETIME, GALYLEO_TIME_OF_DAY).

Throws InvalidDataException if the dictionary is of the wrong format
or the rows don’t match the columns.

	Args:
	dict: the table as a dictionary (a value returned by as_dictionary)

	Throws:
	InvalidDataException if dict is malformed

	
load_from_schema_and_data(schema: list, data: list)

	Load from a pair (schema, data).
Schema is a list of pairs [(<column_name>, <column_type>)]
where column_type is one of the Galyleo types (GALYLEO_STRING, GALYLEO_NUMBER, GALYLEO_BOOLEAN,
GALYLEO_DATE, GALYLEO_DATETIME, GALYLEO_TIME_OF_DAY). All of these are defined
in galyleo_constants. data is a list of lists, where each list is a row of
the table. Two conditions:

	Each type must be one of types listed above

	Each list in data must have the same length as the schema, and the type of each
element must match the corresponding schema type

throws an InvalidDataException if either of these are violated

	Args:
	schema (list of pairs, (name, type)): the schema as a list of pairs
data (list of lists): the data as a list of lists

	
pivot_on_column(pivot_column_name, value_column_name, new_table_name, pivot_column_values={}, other_column=False)

	The pivot_on_column method breaks out value_column into n separate columns, one for each
member of pivot_column_values plus (if other_column = True), an “Other” column. This is easiest to see with an example. Consider a table with columns (Year, State, Party, Percentage). pivot_on_column(‘Party’, {‘Republican’, ‘Democratic’}, ‘Percentage’, ‘pivot_table’, False) would create a new table with columns Year, State, Republican, Democratic, where the values in the Republican and Democratic columns are the values in the Percentage column where the Party column value was Republican or Democratic, respectively. If Other = True, an additional column, Other, is found where the value is (generally) the sum of values where Party not equal Republican or Democratic

	Args:
	pivot_column_name: the column holding the keys to pivot on
value_column_name: the column holding the values to spread out over the pivots
new_table_name: name of the new table
pivot_column_values: the values to pivot on. If empty, all values used
other_column: if True, aggregate other values into a column

	Returns:
	
A table as described in the comments above

	Throws:
	InvalidDataException if new_table_name is empty, pivot_column_name is not a name of an existing column, or value_column_name is not the name of an existing column

	
to_json()

	Return the table as a JSON string, suitable for transmitting as a message
or saving to a file. This is just a JSON form of the dictionary form of
the string. (See as_dictionary)

	Returns:
	as_dictionary() as a JSON string

JupyterLab Client

	
class galyleo.galyleo_jupyterlab_client.GalyleoClient

	The Dashboard Client. This is the client which sends the tables to the dashboard
and handles requests coming from the dashboard for tables.

	
send_data_to_dashboard(galyleo_table, dashboard_name: Optional[str] = None) → None

	The routine to send a GalyleoTable to the dashboard, optionally specifying a specific
dashboard to send the data to. If None is specified, sends to all the dashboards.
The table must not have more than galyleo_constants.MAX_NUMBER_ROWS, nor be (in JSON form) > galyleo_constants.MAX_DATA_SIZE.
If either of these conditions apply, a DataSizeExceeded exception is thrown.
NOTE: this sends data to one or more open dashboard editors in JupyterLab. If there are no dashboard editors open, it will have no effect.

	Args:
	galyleo_table: the table to send to the dashboard
dashboard_name: name of the dashboard editor to send it to (if None, sent to all)

Galyleo Exceptions

Galyleo specific exceptions

	
exception galyleo.galyleo_exceptions.DataSizeExceeded

	Raised when the data volume is too large on a single request. The exact limitations are specified in README.md and in galyleo_constants

	
exception galyleo.galyleo_exceptions.DataSizeIsZero

	Raised when the data set is empty.

	
exception galyleo.galyleo_exceptions.Error

	Base class for other exceptions.

	
exception galyleo.galyleo_exceptions.InvalidDataException

	An exception thrown when a data table (list of rows) doesn’t match an accoompanying schema,
or a bad schema is specified, or a table row is the wrong length, or..

Galyleo Constants

	Constants that are used throughout the module. These include:
	
	Data types for a table (GALYLEO_STRING, GALYLEO_NUMBER, GALYLEO_BOOLEAN, GALYLEO_DATE, GALYLEO_DATETIME, GALYLEO_TIME_OF_DAY)

	GALYLEO_TYPES: The types in a list

	MAXIMUM_DATA_SIZE: Maximum size, in bytes, of a GalyleoTable

	MAX_TABLE_ROWS: Maximum number of rows in a GalyleoTable

	
galyleo.galyleo_constants.GALYLEO_SCHEMA_TYPES = ['string', 'number', 'boolean', 'date', 'datetime', 'timeofday']

	Maximum size of a table being sent to the dashoard. Exceeding this will throw a DataSizeExceeded exception

	
galyleo.galyleo_constants.GALYLEO_TIME_OF_DAY = 'timeofday'

	Types for a chart/dashboard table schema

	
galyleo.galyleo_constants.MAX_DATA_SIZE = 16777216

	Maximum number of rows in a table

 [image: _images/galyleo-logo.png]

The Galyleo Interchange Format

The Galyleo Interchange Format is the wire protocol between the galyleo module and a dashboard and the disk format of a Galyleo Dashboard file. The extension of the file is .gd.json

Overall Structure

The Galyleo Interchange Format is simply the JSONified form of the data structure underlying a Galyleo Dashboard. Its overall structure is:

{
 "tables": <dictionary of tables>,
 "filters" <dictionary of filters>,
 "views": <dictionary of views>,
 "charts": <dictionary of charts>,
 "morphs": <list of morphs>
}

where each dictionary is of the form {<objectNMame>: <structure>}.

Morphic Properties

All physical objects (filters, charts, text, shapes, and images) have a field "morphIndex" and a substructure "morphicProperties". The morphIndex gives the z-order of the morph; 0 is the frontmost morph, n the rearmost. No
two object should share the same morphIndex; the morphIndex should be a total order on physical objects.

The morphicProperties structure describes its physical properties. The fields of the "morphicProperties" structure are:

	Field

	Structure

	Purpose

	Example

	Note

	fill

	Color string

	Color Object

	
	

	position

	Coordinate

	Top-left corner position

	pt(128, 73)

	x = 128, y = 73

	extent

	Coordinate

	Bounding Box width/height

	pt(10, 5)

	width: 10, height: 5

	rotation

	real

	In radians, clockwise

	1.57

	rotated 90° clockwise

	border

	Border object

	Substructure with border properties. See below.

	opacity

	real

	1 = solid, 0 = transparent

	0.5

	semi-transparent

	Clipmode

	Clip enum

	Handle bounding box

overflow

	scroll

	scroll bars appear

A Color Object is a four-tuple:

	Field

	Type

	Semantics

	r

	0-1 real

	red intensity (0 = none, 1 = full)

	g

	0-1 real

	green intensity (0 = none, 1 = full)

	b

	0-1 real

	blue intensity (0 = none, 1 = full)

	a

	0-1 real

	opactiy (0 = transparent, 1 = solid)

A Coordinate is a structure of the form ‘pt(x, y)’, where x and y are reals.

The Clip enum is one of visible, scroll, or auto. Visible is overflow the bounds, hidden is do not show the overflow, scroll is show scrollbars

A border structure is a dictionary with a number of fields. Each field is a structure of the form
{“top”: <top>, “bottom”: <bottom>, “right”: <right>, “left”:<left>}, where <top>, <bottom>, <right>, and <left>
specify the values for each side of the structure. For example:

{ "width": {"top": 2, "bottom": 2, "right": 4, "left": 4}} specifies that the width, in pixels, of the top and bottom borders are 2 and the width of the side borders are 4.

The fields are here. The structure refers to the structure of each of the top, bottom, right, and left components.

	Field

	Structure

	Purpose

	Example

	Note

	Width

	Real

	Border width in pixels

	2

	Must be > 0

	Radius

	Real

	Side arc radius, as a

percentage of side length

	10

	0 = Straight side

100 = full arc

	Type

	BorderType

	style of the border line

	dotted

	border composed of dots

	Color

	Color object

	color of the border line

	
	

A BorderType is an enum (as a string). It is one of: none, hidden, solid, dotted, dashed, ridged, double, groove, or inset

Tables

A table is a dictionary with two entries, columns and rows. A column is a list of entries of the form {"name": <columnName>, "type": <columnType>} where column type must be one of
‘string’, ‘number’, ‘boolean’, ‘date’, ‘datetime’, ‘timeofday’.

The rows field is a list of lists, where each list represents a row of the table. Each component list must:

	Be of the same length as the list of columns

	Be type-compliant with the list of columns. The ith entry in the list must be of the type specified in the ith entry of the column list

Filters

A Filter is a structure of the form: {"savedFilter": <filterSpecification>, "morphIndex": <index>, "morphicProperties": <properties>}. See the discussion above for morphicIndex and morphicProperties. Each filter specification has a field “part”, which gives the URL for the lively.next component used to build the slider.
The filter specification is specific to the filter type, and these are given here:

	Slider

	Field

	Type

	Role

	part

	part URL

	Url of the prototype for the filter

	columnName

	String

	Name of the column this filters

	minVal

	Number

	Minimum possible value for this filter

	maxVal

	Number

	Maximum possible value for this filter

	value

	Number

	Current value for this filter

	increment

	number

	distance between consecutive values

	type

	enum

	type of filter

For as Slider, the filter type is always “NumericSelect”.

	List, Dropdown

	Field

	Type

	Role

	part

	part URL

	Url of the prototype for the filter

	columnName

	String

	Name of the column this filters

	choices

	List

	List of chocies for this filter

	selection

	
	Current selection for this filter

	type

	enum

	type of filter

Selection is the type of the choices of the list; the filter type is always “Select”.

	Range, Double Slider

	Field

	Type

	Role

	part

	part URL

	Url of the prototype for the filter

	columnName

	String

	Name of the column this filters

	minVal

	Number

	Minimum possible value for this filter

	maxVal

	Number

	Maximum possible value for this filter

	min

	Number

	Current minimum of the range selected

	max

	Number

	Current maximum of the range selected

	increment

	number

	distance between consecutive values

	type

	enum

	type of filter

The filter type is always “Range”.

Views

A View is an extremely simple structure; it has three components:

	Field

	Type

	Role

	table

	string

	name of the underlying table

	filters

	list of strings

	Unordered list of the names of

the filters used to find the rows

	columns

	list of strings

	ordered list of the names of
the columns in this view

Charts

A Chart is also a simple structure. It has four fields:

	Field

	Type

	Role/Notes

	chartType

	enum

	type of the chart (chosen from

a supported chart library)

	options

	object

	chart options (library specific)

	viewOrTable

	string

	name of the View or Table that

is the data source for the chart

	morphIndex

	number

	order of the chart in the scene

(0 = front)

	morphicProperties

	object

	see above

Morphs

A morph is a simple structure. Since Morphs are not stored in dictionaries, but rather in lists, the name of the morph is in the morph structure. Every morph has four fields:

	Field

	Type

	Role

	name

	string

	name of the morph

	type

	enum morphType

	morph type: list below

	morphIndex

	number

	z-order of the morph

	morphicProperties

	object

	morphic properties

The morph types are Rectangle, Ellipse, Image, and Text. The Image morph has one additional field:

	Field

	Type

	Role

	imageUrl

	URL

	URL of the image (can be a data URL)

The Text morph has one additional field:

	Field

	Type

	Role

	textProperties

	object

	Text-specific properties

The text properties are given here:

	Field

	Type

	Role

	fontFamily

	string

	Name of the font family

	fontSize

	number

	Size of the font, in pts

	fontWeight

	enum fontWeight

	Weight, fine to bold

	fontStyle

	list of styles

	Weight, fine to bold

	fontColor

	Color Object

	text color

	padding

	number

	padding between text and

bounding box

	textAlign

	enum alignment

	text alignment

	textDecoration

	enum decoration

	underlined or not

	lineWrapping

	enum wrapping

	whether to wrap text

	fixedHeight

	boolean

	if true, bounding box height

independent of tex

	fixedWidth

	boolean

	if true, bounding box width

independent of text

	textString

	string

	the text string itself

	A fontWeight is one of “Fine”, “Medium”, “Bold”, “Extra Bold”

	textAlign is one of “center”, “left”, “right”, “justified”

	fontStyle is one of “normal”, “italic”, “oblique”

	textDecoration is one of “underline” or “none”

	linewrapping is one of “by words”, “anywhere”, “only by words”, “none”

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 galyleo	

 	
 	
 galyleo.galyleo_constants	

 	
 	
 galyleo.galyleo_exceptions	

 	
 	
 galyleo.galyleo_jupyterlab_client	

 	
 	
 galyleo.galyleo_table	

Index

 A
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | P
 | S
 | T

A

 	
 	aggregate_by() (galyleo.galyleo_table.GalyleoTable method)

 	
 	as_dictionary() (galyleo.galyleo_table.GalyleoTable method)

D

 	
 	DataSizeExceeded

 	
 	DataSizeIsZero

E

 	
 	equal() (galyleo.galyleo_table.GalyleoTable method)

 	
 	Error

F

 	
 	filter_by_function() (galyleo.galyleo_table.GalyleoTable method)

 	filter_equal() (galyleo.galyleo_table.GalyleoTable method)

 	
 	filter_range() (galyleo.galyleo_table.GalyleoTable method)

 	from_json() (galyleo.galyleo_table.GalyleoTable method)

G

 	
 	
 galyleo.galyleo_constants

 	module

 	
 galyleo.galyleo_exceptions

 	module

 	
 galyleo.galyleo_jupyterlab_client

 	module

 	
 	
 galyleo.galyleo_table

 	module

 	GALYLEO_SCHEMA_TYPES (in module galyleo.galyleo_constants)

 	GALYLEO_TIME_OF_DAY (in module galyleo.galyleo_constants)

 	GalyleoClient (class in galyleo.galyleo_jupyterlab_client)

 	GalyleoTable (class in galyleo.galyleo_table)

I

 	
 	InvalidDataException

L

 	
 	load_from_dataframe() (galyleo.galyleo_table.GalyleoTable method)

 	
 	load_from_dictionary() (galyleo.galyleo_table.GalyleoTable method)

 	load_from_schema_and_data() (galyleo.galyleo_table.GalyleoTable method)

M

 	
 	MAX_DATA_SIZE (in module galyleo.galyleo_constants)

 	
 module

 	galyleo.galyleo_constants

 	galyleo.galyleo_exceptions

 	galyleo.galyleo_jupyterlab_client

 	galyleo.galyleo_table

P

 	
 	pivot_on_column() (galyleo.galyleo_table.GalyleoTable method)

S

 	
 	send_data_to_dashboard() (galyleo.galyleo_jupyterlab_client.GalyleoClient method)

T

 	
 	to_json() (galyleo.galyleo_table.GalyleoTable method)

 _images/view-column-move.png
Move
columns up and

down to change
CLOSE X

selectall [#

Mouse
changes to
grab

select all

Icons change
to three bars

_images/view-create.png
ial Election Dashboard
1828-2020

View Builder
CLOSE X

Select table...

Create View

Close without
creating

Choose View
Name

Choose
"\ Parent Table

piCity

Create View

Add view [+]

Click to
Add View

100 %

visible ~

343,000 px

_images/chart-edit-3.png
Chart Editor

Start Charts | Customize Chart

Galyleo picks
title based on
filter values

Chart

I Votes

Legend
60000
Right - Bz 2 - H- £
N
Font
o Customize chart
Click OK to options
Background | accept chart
and options Wison,
Woodrow

Features Revert to

N -

form

Tat, Willam Roosevelt, Debs, Eugene
Theodore
"Teddy"

_images/chart-final.png
Votes v Name where Year = 1912, State
= Alabama

100000 -
75000

50000

Votes

25000

o
Wikan, Woodraw _Roosevat, Theo.
Taf Wikam Debe, Eugane

Grab the chart and
drag to its final position

O eaEEmm

_static/file.png

_images/chart-edit-1.png
t C £ elections.gd.json X
Al heAED

sidential- Name
Last Modified || Wilson. Woodrow

7 days ago

7daysage | af wiliam

10 days ago

7 days ago | Roosevelt, Theodore "Teddy"

8 days ago

104

25200 [pebs, Eugene
8 days ago
6 days ago

Repubican

aday ago

New Chart is always
a table and appears in
top left

4 elections.gd.json

X

£ untitled1.gd json X | £ untitled2.gd.json

galyleo-examples/demos/... ®

Votes
Chart Editor
Start | Charts

Recommended charts - More »

Cancel

Choose a
recommended chart or
the charts tab

Roosevelt, TREGHoTe “Teddy"

Debs, Eugene

Choose a
recommended chart or
the charts tab

Tables | Filters | Vi
x
Votes
82438 | -
9717
22680
3,029
B

Chart editor pops up

100

hidd

30400

270,00

85.00

_images/view-edit-1.png
Tables | Filters Charts

Toggle
between column-select
and column-reorder

mode

Close without update

CLOSE X
Candidate Vote

Column Selector selectall [# national_vote

B e
[Fepusicon

W over
=

Click to
bring up
View

Choose columns to
include in View

Widget Selector selectall

Shadow

W veurier

[] state Vote istory Qacity |100%

I s

Choose filters to filter
data for View

ode | Visible~

Update View

_images/chart-edit-2.png
Chart Editor

Start | Charts | Customize Chart name

I Votes

] —
Wison, Tatwiiam Roosevst, _ Debs, ugens

Woodrow Theodore
"Teddy"

Choose
individual
chart

_images/color_wheel.png
Set color in
hex, rgb

Choose hue
range

Drag to
choose color

Drag to set
transparency

_images/context_menu.png
orat
Bring to front
Send to back

_images/chart-first-column.png
Chart Editor Make sure this is

selected so the first
column is the x-axis

Start Chp

St column as labels

ecommended charts - More »

= -

Chart name

100

80

60

20

Vote History where State = Alabama

— Democratic
— Republican
— Progress.
— Refom
— Socialist
— Other

1,850 1,900 1950 2,000

_static/minus.png

_images/color_chooser.png
Select Color
Chooser

[Color Palette Color Harmonies. lode TVisible -
| 508.000px
it 103000 px

180.000px
358000 px
order

Flat Design E L

reeeeemtr N

_static/plus.png

_images/dataflow.png
jupyter —

gaLy\leo*

BT ®

J

il

Static

J

ol

Dynamic

_images/edit-mode.png
Clicking here deletes
the table

residential margins
O o

U @ clectoral college

~Democratic= \ [~Republican~

Add

azs

_images/FullDashboard.png
o

n

® Lo

® ros

& dataserver.engagelively.com;

File Edit

View Run Kernel

c

Q

8/ ... /demos / presidential-

elections /
Name =
™ images
¥ BuildingTh.

] elections.c.

Last Modified
5 days ago
5 days ago
8 days ago

4 elections.g... seconds ago
] Elections.. 5 days ago
B electoral_c... 6 days ago
4 READMEmd 8 days ago
4 untitled.gd... 6 days ago
4 untitled1.g... 4 days ago
Simple oMo @ JsoN

Tabs

Settings Help

elections.gd json

rUABDYD

livel | 8 war | # Galy | @ Qui

@ v

4 elections.gd json x

galyleo-examples/demos/... ®

Democrate]

Ropublica|

Amarican
Independ.

o

00000

600,000

400000

200000

Humptray,

Hubert

Presidential Election Dashboard
1828-2020

g
~Rep¥can—
s Y
-
Percentage v Party where Ye
1968

® oo

Repu.

© .

B 100
963, State
-1 C—
- 10 10 .
—r
—
B —_®
p N —s
—o
1968
°
1.000 2000
Noon, Wallc,
Richard George

Saving completed

Ln1, Col 1

Spaces: 4

elections.gd.json

_images/borders.png
Border
radius (how

_images/chart-create.png
Charts

al Election Dashboard
1828-2020

Margin

Close without State Vote History

creating S

sc_votas

Chart Builder Add chart [+]

Click to add
chart

source from tables
l and views

Create the
chart

presidential_vote

ty 100%

Clipmode | Visible™

_images/filter-create.png
galyleo-examples/demos/... ® CLOSE X
Close without Tables | Filters | Views | Charts
creating a new

filter
Filters/Widgets

Set name of the
StateFilter new filter

Select widget type... ™

Choose column
to filter type

Click to bring up filter
dialog

Create the filter

nav.xhtml

 Table of Contents

 		
 Welcome to Galyleo’s documentation!

 		
 GETTING STARTED

 		
 Overview

 		
 Tutorials and Demos

 		
 Reporting an issue

 		
 Frequently Asked Questions

 		
 User Guide

 		
 Launching A Dashboard

 		
 The Galyleo User Interface

 		
 The Top Bar

 		
 The Halo and the Side Bar

 		
 The Context Menu

 		
 Galyleo Data Architecture And Flow

 		
 Tables

 		
 Filters

 		
 Views

 		
 Charts

 		
 Charts as Filters

 		
 Names and Namespaces

 		
 Using Galyleo

 		
 The Galyleo UI

 		
 Sending Tables to the Dashboard

 		
 Adding a Filter

 		
 Creating a View

 		
 Creating a Chart

 		
 The Galyleo Python Client

 		
 Installation

 		
 License

 		
 Galyleo Table

 		
 JupyterLab Client

 		
 Galyleo Exceptions

 		
 Galyleo Constants

 		
 The Galyleo Interchange Format

 		
 Overall Structure

 		
 Morphic Properties

 		
 Tables

 		
 Filters

 		
 Views

 		
 Charts

 		
 Morphs

_images/halo_sidebar.png
Change the
object’s color, or
fill

Assign a
Delete the drop-shadow
Move the object effect

object

Stretch/
resize the
object

100% is solid,
0% transparent

Click
here to close the
sidebar

Set scroll

behavior
e Set width .
Rotate the and height, in
object pixels

Set the
position of the
top-left
comeri

visible
20005

——= -
Height 161.000 px
X ss300050
ss0000pc

~ [i Border

Add

_images/image_url.png
Set the Image’s
URL

Shadow
Opacity
Clipmode
Width
Height

X
1y

Image URL

100 %

visible >

139.000 px
110.000 px
863.000 px

501.000 px

tps://i.imgur.com/uGRFZEs jp,

_images/filter-edit.png
x
[

Close without
update

Click
to toggle

Filter: YearFilter

CLOSE X

]
]

Apply changes

Update filter

between
inspect and
edit mode

~Democratic~

7 azs

CLOSE X

Views | Charts

Filters/Widgets

Click to bring
up editor on
existing filter

_images/galyleo-logo.png
gal:}ZIeo*

_images/tables-edit.png
Close the
sidebar

Choose the
category
Untitled2.gd json

s

gelyleo-examplsya E X

Filters

Charts

Toggle between
select and edit
modes

presidential_vote
presidential_vote_history
presidential_margins

electoral_callege.

Close the
sidebar

Add a table from an
URL

_images/text_sidebar.png
X | %% untitled.gd.json X | *% untitledl.gd.json X | % untitled2.gd.json A4

galyleo-examples/demos/... ® CLOSE X

Tables | Filters | Views | Charts

Tables

Font family and weigh

Styling: bold, italic,
underline, hyperlink

Copy a style or
paste a previously-

copied style

Line wrapping | by-words ™

Fixed Width Fixed Height

» Padding gpx

size or varies with

string?

and shape border

B Shape
v T Rardar

_images/new_dashboard.png
® Chrome File Edit View History Bookmarks Profiles Tab Window Help O o @3 Tue 17:16

init | 1B eng: | @ Lau | @ Pos o iive! | [Gal Aut livel | B war | B Galy | @ Quic | @

<« C & dataserver.engagelively.com ¢]

i Apps [engageLively Dail.. T8 *RickTodo|Trello &) Tim's schedule ¢ engagelively & Newlssue.engag... & Rat City: Visualizi. Projects - Dashbo... 8 * Rick Todo | Trelo B Research tools ES Boards ES Funding ES Newchip ES NSF ES Demos

Z | File | Edit View Run Kemel Tabs Settings Help

= New » B Console slections.gd.json X | [Launcher X
New Launcher oL | [7 Notebook
M Terminal b

Open from Path. . .
o " = TextFile lles/demos/presidential-elections

M Markdown File

4 Galyleo Dashboard

File>New> Galyleo Dashboard

Close Tab xw

M| Closeand Shutdown ~oq ?
Close All Tabs e o

Python 3
Save All » B!
B console b
ho
e g
[Python 3 [
Export Notebook As. , vion Launcher
icon
Save Current Workspace As..
. Save Current Workspace Other [
A Log Out — M E
1 Shut Down = v
- ho
Terminal Text File Markdown File Galyleo Show ov
Dashboard Contextual Help
ebgl_anil
inning Lo
g

Simple oMo ® Saving completed Launcher

_images/open.png
X | 4 elections.gdjsor

Filter files by name Q
Y galyleo-examples/demos/pr

™/ - [demos
[A] Notebook

elections /

Elections.g.. 23 minutes ago

Python3
] Elections.. 5 days ago

B electoral c... 6 days ago

"

¥ README.md 8days ago Console
4 untitled.gd... 6 days ago

4 untitled1.g... 4 days ago

e

Python 3

_images/topbar.png
Kernel Tabs Settings Help

lections.gd.json X | 4 elections.gd.json X | © Launcher

A kWA BYD

c

ntial-

Report a
bug

 Modified
 days ago
 days ago
 days ago
nutes ago
 days ago
 days ago
 days ago
 days ago
 days ago

Selection, or
“Halo” Mode

Interaction
Mode

