
Galyleo
Release 0.5

Andreas Bergen, Mahdi Biazi, Tim Braman, Matthew Hemmings, Rick McGeer, Robin Schreiber

Nov 22, 2022

CONTENTS

1 GETTING STARTED 3
1.1 Overview . 3

1.1.1 Tutorials and Demos . 4
1.1.2 Reporting an issue . 4
1.1.3 Frequently Asked Questions . 4

2 User Guide 5
2.1 Launching A Dashboard . 5
2.2 The Galyleo User Interface . 6

2.2.1 The Top Bar . 6
2.2.2 The Halo and the Side Bar . 8
2.2.3 The Context Menu . 13

2.3 Galyleo Data Architecture And Flow . 13
2.3.1 Tables . 14
2.3.2 Filters . 15
2.3.3 Views . 16
2.3.4 Charts . 16
2.3.5 Charts as Filters . 17
2.3.6 Names and Namespaces . 17

2.4 Using Galyleo . 17
2.4.1 The Galyleo UI . 18
2.4.2 Sending Tables to the Dashboard . 19
2.4.3 Adding a Filter . 20
2.4.4 Creating a View . 21
2.4.5 Creating a Chart . 25

3 The Galyleo Python Client 31
3.1 Installation . 31
3.2 License . 31
3.3 Galyleo Table . 31
3.4 JupyterLab Client . 34
3.5 Galyleo Exceptions . 35
3.6 Galyleo Constants . 35

4 The Galyleo Interchange Format 37
4.1 Overall Structure . 37
4.2 Morphic Properties . 37
4.3 Tables . 38
4.4 Filters . 38
4.5 Views . 39

i

4.6 Charts . 40
4.7 Morphs . 40

5 Indices and tables 43

Python Module Index 45

Index 47

ii

Galyleo, Release 0.5

CONTENTS 1

Galyleo, Release 0.5

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

1.1 Overview

Galyleo is a package for the drag-and-drop design and publication of interactive dashboards driven by Jupyter Note-
books. It is available as an extension to JupyterLab, and is also available for other Jupyter enviroments or other pro-
grams. A similar dashboard can be found here: elections.

This dashboard is designed entirely in Galyleo:

Galyleo was designed to fit seamlessly into the Jupyter workflow. A Galyleo document is stored on the Jupyter Hub’s
storage system, and the Galyleo Editor is simply another tab in a standard JupyterLab environment. In other words, it
is simply another tool in JupyterLab to complement the Notebook environment.

Galileo, of course, was the inventor of the telescope and the person who first say Jupiter’s moons; we are a visualization
solution and we hope that our users will use our technology to make profound discoveries.

3

https://editor.engagelively.com/lively.freezer/frozenParts/rick/US_Presidential_Election/index.html

Galyleo, Release 0.5

1.1.1 Tutorials and Demos

A number of tutorial and example projects can be found at: Galyleo Examples.

1.1.2 Reporting an issue

Please use the bug-reporting button on the Galyleo toolbar to report an issue to us, or write
galyleo_support@engagelively.com

1.1.3 Frequently Asked Questions

1. Is Galyleo free and open-source?

Yes. Galyleo is released under a BSD 3-clause license.

2. Can I use Galyleo with a Notebook using an R, Julia, or other kernel, or must I use Python?

The connection between the dashboard and the kernel is given by the Galyleo client, which is currently a Python module.
So if the kernel can use Python modules, it can be used today. The Galyleo module is very simple, so we expect to
implement it in other languages. Of course, it is also open-source, and the protocol is documented; so others are free
to implement this as well.

3. Can I use other editors besides the Galyleo editor to edit my dashboard?

Yes. The dashboard’s disk and wire format is a JSON document, and the format is specified in the interchange format
section.

4. What’s the underlying technology for the editor?

The underlying technology is lively.next, an MIT-licensed environment for developing browser-hosted graphical, inter-
active applications. You can find its repo here: Lively Next:

5. Can I publish my dashboards to the web, or on my local intranet?

We’ve developed, and are in beta, with a web application which takes the URL for a Galyleo Dashboard document
as the parameter dashboard and renders the document in the browser. The page is at https://galyleobeta.engageLively.
com/public/galyleo/index.html. That page can be served from any convenient web server, on the web or on an intranet.
So publication is as easy as storing the dashboard file on any resource that has an URL (e.g., in a github repo, or for
that matter Google Drive with the appropriate permissions).

Following that, on our roadmap is a feature which will drop a complete web page as a directory into your JupyterLab
directory, and from there you can export it to any convenient web page.

6. What browsers are required to run Galyleo Studio?

We’ve tested it on Chrome, Firefox, Edge, and Safari. We believe that a keybnoard and mouse or touchpad are required
to get the best use out of Galyleo Studio, so we recommend the use of a computer or netbook to build dashboards.
Dashboards can be viewed on any modern browser on any device.

4 Chapter 1. GETTING STARTED

https://github.com/engageLively/galyleo-examples
mailto:galyleo_support@engagelively.com
https://github.com/LivelyKernel/lively.next
https://galyleobeta.engageLively.com/public/galyleo/index.html
https://galyleobeta.engageLively.com/public/galyleo/index.html

CHAPTER

TWO

USER GUIDE

2.1 Launching A Dashboard

A new Galyleo Dashboard can be launched from the JupyterLab launcher or from the File>New menu:

An existing dashboard is saved as a .gd.json file, and is denoted with the Galyleo star logo:

5

Galyleo, Release 0.5

It can be opened in the usual way, with a double-click.

2.2 The Galyleo User Interface

The Galyleo User interface consists of three components: the top bar, the side bar, and the Halo and Context Menu. We
discuss each of these in turn. The mission of the Top Bar is to switch between global modes (interacting and selecting)
and added non-chart elements (shapes, images, and text) to the dashboard. The Halo and Side Bar is where individual
objects are positioned and configured: where shape and text properties are set, borders defined, and images chosen.
The Halo permits the copying, deletion, resizing, and rotation rotation, of objects front-to-back. The Context Menu,
brought up by a right-click on the object, permits its reordering.

2.2.1 The Top Bar

The top bar controls are in the top left of the dashboard. They are primarily used to choose between selection mode
(when the user is designing the dashboard) and interaction mode (when the user is interacting with the dashboard, e.g,
manipulating a slider). The practical difference is that when the user is in interaction mode (the arrow is highlighted) a
Halo appears over the clicked item and the sidebar is shown; when in interaction mode (the hand is selected) the object
is manipulated on click. When Text (the A) is selected, a user click brings up a text box. When a shape is selected (one
of Rectangle, Ellipse, Image, or Label) the appropriate shape is drawn in response to a user click. The last item on the
top bar is a lifesaver icon, which brings up a bug-report dialog.

6 Chapter 2. User Guide

Galyleo, Release 0.5

2.2. The Galyleo User Interface 7

Galyleo, Release 0.5

2.2.2 The Halo and the Side Bar

The Halo and the Side Bar are used to configure an object when it’s created, and can also be used to configure physical
properties of charts and filters. The Halo automatically appears when an object is clicked on and Selection mode is
enabled (the arrow icon in the top bar. The side bar automatically appears when a shape or text is created, or when the
knob in the middle of the sidebar is clicked.

The Halo shows control points and tools around the selected object. The eight control points in the inner halo are used
to change the width and height of the object. The tool in the bottom-left corner is used to rotate the object. The cross
on the top bar is used to move it. The trash can on the bottom left is used to delete the object.

The Side bar consists of two parts. The top one, which we’ll return to later, manages Tables, Filters, Views, and Charts.
The bottom part is used to configure objects. It has three sections, each activated by clicking on the chevron next to the
name.

The Shape configurer is shown in the image, with its eight components shown. They are used to configure the fill
(color) and opacity of the object, as well as whether the object casts a drop shadow.

8 Chapter 2. User Guide

Galyleo, Release 0.5

The Color Chooser offers two modes to choose the color of an object. The first, found by clicking the left-hand rectangle,
brings up a palette of colors to choose from.

2.2. The Galyleo User Interface 9

Galyleo, Release 0.5

The second permits a fine-grained choice. The Hue bar is used to set the area of the rainbow to pick a color from;
dragging the dot in the left-hand square gives the user the ability to choose a specific color. The slider at the bottom
controls opacity/transparency of the color (as opposed to the object itself). Finally, the text box gives the user the ability
to specify an RGB color, entered as six hex digits.

The “Clipmode” menu gives the user the ability to control what happens when the object is too big for its bounding
box. The choices are “visible” (overflows), “hidden” (cut off), “scroll” (scrollbars appear at the right and/or bottom of
the object, and “auto” – the system chooses.

The position is the x,y coordinate of the top-left corner of the object, where (0,0) is the top-left corner of the dashboard;
x increases left-to-right, and y top-to-bottom.

10 Chapter 2. User Guide

Galyleo, Release 0.5

When an image is selected, a dialog appears at the bottom of the Shape configurer, permitting the user to choose the
URL for the image.

The Borders configurer, below the shape configurer, offers the user the ability to control the color, width, and radius
of corners, and the type of line that forms the borders (solid, dotted, dashed, ridged, double, groove, or inset). Hidden
and none, two other border options, are equivalent to no border.

2.2. The Galyleo User Interface 11

Galyleo, Release 0.5

The Text controller only appears when a Text item is selected, and it is used to control the textual properties of a text
object. These are:

• The font family and weight (fine to extra-bold)

• The font style (bold, italic, underline, hyperlink)

• The font size and color

• Alignment

• Whether and how lines are wrapped (by words, anywhere, only by words (cannot break a word, or by characters)

• Whether the text box size is set by the user or grows and shrinks with the storing

• The padding control gives the spacing between the text boundary and the boundary of the object, in pixels

12 Chapter 2. User Guide

Galyleo, Release 0.5

There are also three buttons, next to the color chooser, which permit a user to copy style (the standard copy icon), paste
a copied style (the paste brush), or clear all formatting (the x).

2.2.3 The Context Menu

The context menu appears when the object is right-clicked and selection mode is enabled. It controls the ordering of
objects, front-to-back.

2.3 Galyleo Data Architecture And Flow

The data flow in Galyleo is shown here. Data is produced in a Jupyter Notebook, and then sent to a dashboard via
the Galyleo library. The object sent to a dashboard is a Table, which is conceptually a SQL database table – a list of
columns, each with a type, and a list of list of rows, which form the Table’s data. The data is then optionally passed
through filters. A Filter is a user interface element that selects a value (or range of values) from a column. This can be
used to choose subsets of rows from a particular table, to create what we call a View.

A View is a subset of a table; a selection (and, potentially, a reordering) of the columns of a table, and a subset of its rows,
chosen by one or more Filters. Static charts can take as input Table; these charts display the same data, independent of
user actions. Dynamic charts take as input a View, which shows the data as filtered by the user through user inputs.

2.3. Galyleo Data Architecture And Flow 13

Galyleo, Release 0.5

2.3.1 Tables

A Table is equivalent to a SQL database table – a list of columns, each with a type, and a list of list of rows, which
form the Table’s data.* A table has a name, which must be unique among tables and views, a source, a schema,
and data. A schema is a list of records of the form {"name": <name>, "type": <type>}, where <name> is
the column name and type is the column type, which is chosen from the set {"number", "string", "boolean",
"date", "datetime", "timeofday"}. These are captured in the galyleoconstants library GALYLEO_STRING,
GALYLEO_NUMBER, GALYLEO_BOOLEAN, GALYLEO_DATE, GALYLEO_DATETIME, GALYLEO_TIME_OF_DAY.

The Table data is a list of lists, where each list is a row of the table. Each row must meet two conditions:

• The entry in column i must be of the type of schema entry i

• It must have the same length as the schema

Tables are formed using the GalyleoTable class in the galyleo_table Python module.

Here’s a simple example of a Table, which we’ll use throughout this tutorial:

14 Chapter 2. User Guide

Galyleo, Release 0.5

Table 1: Cereal Example
name mfr type calories fiber rating
100% Bran N C 70 10 68.402973
100% Natural Bran Q C 120 2 33.983679
All-Bran K C 70 9 59.425505
All-Bran with Extra Fiber K C 50 14 93.704912
Almond Delight R C 110 1 34.384843
Apple Cinnamon Cheerios G C 110 1.5 29.509541
Apple Jacks K C 110 1 33.174094
Basic 4 G C 130 2 37.038562
Bran Chex R C 90 4 49.120253
Bran Flakes P C 90 5 53.313813
Cap’n’Crunch Q C 120 0 18.042851
Cheerios G C 110 2 50.764999
Cream of Wheat (Quick) N H 100 1 64.533816
Maypo A H 100 0 54.850917

This is a formatted version of the table. The schema is:

[
{"name": "name", "type": GALYLEO_STRING},
{"name": "mfr", "type": GALYLEO_STRING},
{"name": "type", "type": GALYLEO_STRING},
{"name": "calories", "type": GALYLEO_NUMBER},
{"name": "fiber", "type": GALYLEO_NUMBER},
{"name": "rating", "type": GALYLEO_NUMBER}

]

And the first data row is:

["100% Bran","N","C",70,10,68.402973]

2.3.2 Filters

A Filter is a user-interface element that selects rows from tables, based on values from an individual, named column. A
Select Filter chooses rows whose value in the named column is equal to the filter’s value. For example, a Select Filter
over the type column in our example whose value is “H” would select rows:

name mfr type calories fiber rating
Cream of Wheat (Quick) N H 100 1 64.533816
Maypo A H 100 0 54.850917

A Range filter chooses rows whose value lies between the two values of the filter. For example, a Range Filter over the
calories column whose minimum is 50 and whose maximum is 70 would select the rows

name mfr type calories fiber rating
100% Bran N C 70 10 68.402973
All-Bran K C 70 9 59.425505
All-Bran with Extra Fiber K C 50 14 93.704912

2.3. Galyleo Data Architecture And Flow 15

Galyleo, Release 0.5

Range and Select specify the functional properties of filters (whether the filter selects a specific value or all values in a
range). The physical properties of a filter are dependent on the functional properties of the filter, the data type of the
column, and user experience factors. For example, a spinner and a slider are both Select filters over numeric columns,
but are very different widgets. At this writing, the current set of supported filters are:

Filter Filter Type Column Type
List Select any
Dropdown Select any
Spinner Select Number
Slider Select Number
Min/Max Range Number
Double Slider Range Number
Toggle Select Boolean

2.3.3 Views

A _View_ is a subset of a table; a selection (and, potentially, a reordering) of the columns of a table, and a subset of its
rows, chosen by one or more Filters. While a chart can take as input a _Table_, such a chart wouldn’t respond to user
inputs (because a user selects the rows he’s interested in by adjusting a Filter, and filters only affect the rows in Views).
A View is chosen with: - a source table; - a fixed subset (and potential reordering) of columns - a set of filters which
select the rows of the table. The filters are considered to have acted in sequence, and thus the rows preserved are the
logical AND of the applied filters. For example, suppose we wanted to construct a View with columns name, rating
from our table, and had a range filter on column calories and a select filter on column mfr. The View would be:

{
"table": "cereal",
"columns": ["name", "rating"],
"filters": ["mfrFilter", "calorieFilter"]

}

And, if mfrFilter was set to “N” (Nabisco) and calorieFilter to [50, 90], the data in the view would be:

name rating
100% Bran 68.402973

2.3.4 Charts

Charts are, well, charts. Each chart takes its input data from a View or a Table. The category, or X axis (place on
geocharts, X axis on column charts or line charts, Y axis on bar charts, wedge labels on donut or pie charts) is the first
column in the view or table. This is why an important part of constructing a view is reoordering columns. The current
set of Chart types supported by Galyleo are Google Charts; however, we intend to extend these chart types in the near
future, to include OpenLayers, Leaflet.js, Chart.js, Cytoscape.js, and others. It is the intent of the Galyleo system that
any JavaScript/HTML5-hosted charts be available under Galyleo.

16 Chapter 2. User Guide

Galyleo, Release 0.5

2.3.5 Charts as Filters

One common operation in Dashboards is to use Charts as filters. This enables drill-down and detail operations on
particular categories. Consider, for example, a table that gives average rating by manufacturer on the cereals example,
where the data is shown on the dashboard as a column chart. What we’d like is to see the detailed rating, by cereal
brand, on another chart, filtered by manufacturer, and when the user clicks on the bar for a particular manufacturer on
the average-rating chart the detail for that manufacturer is shown on the detail-rating chart. Or consider the Presidential
Election database example; when we click on a state, we see the vote for that state for the chosen year and the voting
history for that state. In both these cases, the chart is being used as a filter; it selects the manufacturer for the rating-
detail chart and the state in the vote-history and vote-detail charts. This is such a common use case that it is made a
feature in Galyleo: every chart is a filter. Specifically, it is a select filter on the category column of the View or Table
that is input to the chart. As we’ll see below, charts show up in the same UI sections as filters.

2.3.6 Names and Namespaces

References are by name in Galyleo; each object (Table, Filter, View, or Chart) has a name. Since a Chart can take
input from a View or a Table, Views and Tables share the same namespace (Data Source) and a Table cannot have the
same name as a View. Similarly, since every Chart is also a Filter, Charts and Filters share the same namespace (Data
Selectors), and a Chart cannot have the same name as a Filter or another Chart. Objects in different namespaces can
share a name. For example, it’s quite common for a View and a Chart to share a name, when the View is the data source
for the Chart and isn’t otherwise used.

Namespace Objects
Data Source Tables, Views
Data Selector Charts, Filters

2.4 Using Galyleo

This section covers the library and user interface elements for sending Tables from Jupyter Notebooks to Galyleo
Dashboards, and using the Galyleo UI to add Filters, Views, Charts, and explanatory elements (Text, Shapes, and
Images) to the Dashboard. The UI for Shapes, Images, and Text was largely covered above, so we’ll focus on tables,
filters, views, and charts here.

2.4. Using Galyleo 17

Galyleo, Release 0.5

2.4.1 The Galyleo UI

Key elements of the Galyleo UI can be seen in the Tables section of the sidebar, shown here with annotations.

The tab selectors choose the category of item being viewed. Here, it is the list of Tables (the Tables tab is highlighted
in orange). To the right of each Table name is an inspection icon. Clicking on this gives a preview of the selected table
in a popup window. Warning: this should be done carefully, since viewing large tables can cause performance issues.
Clicking on the “Add Table” button brings up a popup, inviting a load of a Table in intermediate form from an URL.

The sidebar is closed either by clicking on the orange triangle in the center of the sidebar’s left edge, or on the close
button on the top right.

Clicking on the pen icon on the top right of the Table list toggles between inspection mode and edit mode.

18 Chapter 2. User Guide

Galyleo, Release 0.5

When in edit mode, clicking on the circle to the left of a table name deletes the circle. Clicking on the pen icon again
restores inspection mode.

Every element of the Table UI is present for all classes of element, (Tables, Filters, Views, and Charts). The pen is
present in all lists to switch between inspection/configuration mode for all classes, each class has an Add button, and
the close-sidebar buttons are always present.

2.4.2 Sending Tables to the Dashboard

The anticipated method of loading a table is to send it from a Notebook. The Galyleo Client document has a
detailed description of how to do that. The brief version is to collect the data in a tabular forma, either a list
of lists or a Pandas dataframe, create a GalyleoTable from the galyleo.galyleo_table module, load the
data into it, create a GalyleoClient from the galyleo.galyleo_client module, and then use the client.
send_data_to_dashboard() method to send the data.

send_data_to_dashboard sends data to open dashboards in the JupyterLab editor. Data can be sent to a specific
dashboard by naming it in the call to send_data_to_dashboard. Here is a short snippet which sends the cereals data
we’ve used above to a dashboard, assuming the file is in cereals.csv:

from galyleo.galyleo_jupyterlab_client import GalyleoClient
from galyleo.galyleo_table import GalyleoTable
from galyleo.galyleoconstants import GALYLEO_STRING, GALYLEO_NUMBER
import csv
f = open('cereals.csv', 'r')
reader = csv.csv_reader(f)
data = [row for row in reader][:1]
table = GalyleoTable('cereals')
schema = [("name", GALYLEO_STRING), ("mfr", GALYLEO_STRING), ("type", GALYLEO_STRING),␣
→˓("calories", GALYLEO_NUMBER), ("fiber, GALYLEO_NUMBER), ("rating", GALYLEO_NUMBER)]
table.load_from_schema_and_data(schema, data)
client = GalyleoClient()
client.send_data_to_dashboard(table)

Other methods of loading data and schemas can be found in the documentation for the GalyleoTable class.

2.4. Using Galyleo 19

Galyleo, Release 0.5

2.4.3 Adding a Filter

Once tables are in the dashboard, filters can be created and edited. This is done in the Filters tab, found by clicking
filters. Once again, there is an Add button below the lower-right corner of the filter list. Click this, and a popup is
brought up, permitting the user to create a filter.

The filter must have a name, which cannot be the name of another filter or chart. Type this in the input box, and select
a widget type from the upper drop-down and a column name from the lower drop-down, then click create. Clicking
“Close” closes the dialog without creating a new filter.

Various errors can occur during this process. In particular, Range filters are only valid over numeric columns, and if a
mismatched column is selected an error message will appear; the same message appears if a column is not chosen or
a widget type is not chosen. An error will display if a name is not entered, or if the name of another filter or chart is
chosen.

Once the filter is created, it appears in the top-left corner of the dashboard. The Filter is a physical object, and can be
manipulated as with any other physical object on the dashboard, using the Halo and Sidebar as described above. Put
the dashboard into selection mode and move the filter as desired.

20 Chapter 2. User Guide

Galyleo, Release 0.5

Clicking on the gear icon beside the name of an existing filter brings up a filter editor, as shown here. The filter editor
is very similar to the filter creator; it simply lacks an input for the filter name. Choose column and widget, then Apply
Changes to update the filter, or Close to close without update.

Notice the pen icon is at the top right; once again, it is used to switch between inspection and edit modes, and filters
are deleted in edit mode just as tables are, and with the same icon.

Note: Using the Halo to delete the Filter from the dashboard has the same effect as deleting it from the filter list.

2.4.4 Creating a View

Creating a View is very similar to creating a Filter, under the Views Tab. Once again, there is an Add button below the
lower-right corner of the views list. Click this, and a popup is brought up, permitting the user to create a view.

2.4. Using Galyleo 21

Galyleo, Release 0.5

The view must have a name, which cannot be the name of another view or table. Type this in the input box, and choose
the underlying table from the drop-down, then click create. Clicking “Close” closes the dialog without creating a new
view.

An error will display if a name is not entered, or if the name of another view or table is chosen.

Once a View is created, it is immediately added to the View List, and a View editor is brought up.

22 Chapter 2. User Guide

Galyleo, Release 0.5

The View Editor is also brought up by clicking on the gear icon beside the name of a View. It consists of two panels, a
Column Chooser and a Filter Chooser. The Column Chooser chooses the columns for the View, and the Filter Chooser
chooses the filters which will be applied to the underlying table to get the rows for the View.

2.4. Using Galyleo 23

Galyleo, Release 0.5

Since column order is important for a View, there is a column-order mode. It is toggled by choosing the pen icon above
the Columns list. When it is toggled, the icons beside the column names change to three horizontal bars and the mouse
changes to a grab icon. The columns can then be dragged into order with the mouse. Note that while all columns are
displayed, only the order of selected columns are important.

As with tables and filters, views can be deleted using the pen icon above the view list to switch to edit mode, then
deleting views in the same way tables and filters are deleted.

24 Chapter 2. User Guide

Galyleo, Release 0.5

2.4.5 Creating a Chart

Creating a Chart is very similar to creating a View, under the Charts Tab. Once again, there is an Add button below the
lower-right corner of the chart list. Click this, and a popup is brought up, permitting the user to create a chart.

The chart must have a name, which cannot be the name of another chart or filter. Type this in the input box, and choose
the view or table to use as a data source from the drop-down, then click create. Clicking “Close” closes the dialog
without creating a new chart.

An error will display if a name is not entered, or if the name of another filter or chart is chosen.

Once a chart is created, it is immediately added to the chart List, the chart is brought up as a table on the dashboard,
and the Chart Editor pops up.

2.4. Using Galyleo 25

Galyleo, Release 0.5

The Chart Editor is also brought up by clicking on the gear icon beside the name of a Chart.

Once the Chart Editor pops up (it is the standard Google Chart Editor), choose the chart type either from the recom-
mended charts on the start page, or click the Charts tab and then choose the chart type on the charts page.

Then click customize and choose chart options. We recommend that you not choose a title for the chart; Galyleo
automatically generates a title based on the names of the columns chosen and the values of the filters used to drive the
chart.

26 Chapter 2. User Guide

Galyleo, Release 0.5

Once you’re happy with the chart, click OK

2.4. Using Galyleo 27

Galyleo, Release 0.5

Important note. When choosing Line or Area Charts, using the first column as X-axis labels (rather than a data series)
must be explicitly chosen by checking “Use 1st Column as Labels” on the Start tab in the editor.

28 Chapter 2. User Guide

Galyleo, Release 0.5

As with tables, filters, and views, charts can be deleted using the pen icon above the chart list to switch to edit mode,
then deleting charts in the same way tables, filters and charts are deleted. And, as with filters, deleting the physical
chart with the Halo has the same effect as deleting charts from the chart list.

2.4. Using Galyleo 29

Galyleo, Release 0.5

30 Chapter 2. User Guide

CHAPTER

THREE

THE GALYLEO PYTHON CLIENT

The Galyleo Python client is a module designed to convert Python structures into Galyleo Tables, and send them to
dashboards for use with the Galyleo editor. It consists of four components:

• galyleo.galyleo_table: classes and methods to create GalyleoTables, convert Python data structures into them,
and produce and read JSON versions of the tables.

• galyleo.galyleo_jupyterlab_client: classes and methods to send Galyleo Tables to Galyleo dashboards runniung
under JupyterLab clients

• galyleo.galyleo_constants: Symbolic constants used by these packages and the code which uses them

• galyleo.galyleo_exceptions; Exceptions thrown by the package

3.1 Installation

The galyleo module can be installed using pip:

pip install --extra-index-url https://pypi.engagelively.com galyleo

When the module is more thoroughly tested, it will be put on the standard pypi servers.

3.2 License

galyleo is released under a standard BSD 3-Clause licence by engageLively

3.3 Galyleo Table

class galyleo.galyleo_table.GalyleoTable(name: str)
A Galyleo Dashboard Table. Used to create a Galyleo Dashboard Table from any of a number of sources, and
then generate an object that is suitable for storage (as a JSON file). A GalyleoTable is very similar to a Google
Visualization data table, and can be converted to a Google Visualization Data Table on either the Python or the
JavaScript side. Convenience routines provided here to import data from pandas, and json format.

aggregate_by(aggregate_column_names, new_column_name='count', new_table_name=None)
Create a new table by aggregating over multiple columns. The resulting table contains the aggregate column
names and the new column name, and for each unique combination of values among the aggregate column
names, the count of rows in this table with that unique combination of values. The new table will have
name new_table_name Throws an InvalidDataException if aggregate_column_names is not a subset of the
names in self.schema

31

Galyleo, Release 0.5

Args: aggregate_column_names: names of the columns to aggregate over new_column_name: name of
the column for the aggregate count. Defaults to count new_table_name: name of the new table. If
omitted, defaults to None, in which case a name will be generated

Returns: A new table with name new_table_name, or a generated name if new_table_name == None

Throws: InvalidDataException if one of the column names is missing

as_dictionary()
Return the form of the table as a dictionary. This is a dictionary of the form: {“name”: <ta-
ble_name>,”table”: <table_struct>} where table_struct is of the form: {“columns”: [<list of schema
records],”rows”: [<list of rows of the table>]}

A schema record is a record of the form: {“name”: < column_name>, “type”: <column_type}, where
type is one of the Galyleo types (GALYLEO_STRING, GALYLEO_NUMBER, GALYLEO_BOOLEAN,
GALYLEO_DATE, GALYLEO_DATETIME, GALYLEO_TIME_OF_DAY). All of these are defined in
galyleo_constants.

Args: None

Returns: {“name”: <table_name>, “table”: {“columns”: <list of schema records], “rows”: [<list of rows
of the table>]}}

equal(table, names_must_match=False)
Test to see if this table is equal to another table, passed as an argument. Two tables are equal if their schemas
are the same length and column names and types match, and if the data is the same, and in the same order.
If names_must_match == True (default is False), then the names must also match

Args: table (GalyleoTable): table to be checked for equality names_must_match (bool): (default False) if
True, table names must also match

Returns: True if equal, False otherwise

filter_by_function(column_name, function, new_table_name, column_types={})
Create a new table, with name table_name, with rows such that function(row[column_name]) == True.
The new table will have columns {self.columns} - {column_name}, same types, and same order Throws
an InvalidDataException if: 1. new_table_name is None or not a string 2. column_name is not a name of
an existing column 3. if column_types is not empty, the type of the selected column doesn’t match one of
the allowed types

Args: column_name: the column to filter by function: a Boolean function with a single argument of the
type of columns[column_name] new_table_name: name of the new table column_types: set of the
allowed column types; if empty, any type is permitted

Returns: A table with column[column_name] missing and filtered

Throws: InvalidDataException if new_table_name is empty, column_name is not a name of an existing
column, or the type of column_name isn’t in column_types (if column_types is non-empty)

filter_equal(column_name, value, new_table_name, column_types)
A convenience method over filter_by_function. This is identical to filter_by_function(column_name,
lambda x: x == value, new_table_name, column_types)

Args: column_name: the column to filter by value: the value to march for equality new_table_name: name
of the new table column_types: set of the allowed column types; if empty, any type is permitted

Returns:

A table with column[column_name] missing and filtered

Throws: InvalidDataException if new_table_name is empty, column_name is not a name of an exist-
ing column, or the type of column_name isn’t in column_types (if column_types is non-empty)

32 Chapter 3. The Galyleo Python Client

Galyleo, Release 0.5

filter_range(column_name, range_as_tuple, new_table_name, column_types)
A convenience method over filter_by_function. This is identical to filter_by_function(column_name,
lambda x: x >= range_as_tuple[0], x <= range_as_tuple[1], new_table_name, column_types)

Args: column_name: the column to filter by range_as_tupe: the tuple representing the range
new_table_name: name of the new table column_types: set of the allowed column types; if empty,
any type is permitted

Returns:

A table with column[column_name] missing and filtered

Throws: InvalidDataException if new_table_name is empty, column_name is not a name of an exist-
ing column, or the type of column_name isn’t in column_types (if column_types is non-empty),
if len(range_as_tuple) != 2

from_json(json_form, overwrite_name=True)
Load the table from a JSON string, of the form produced by toJSON(). Note that if the overwrite_name
parameter = True (the default), this will also overwrite the table name.

Throws InvalidDataException id json_form is malformed

Args: json_form: A JSON form of the Dictionary

Returns: None

Throws: InvalidDataException if json_form is malformed

load_from_dataframe(dataframe, schema=None)
Load from a Pandas Dataframe. The schema is given in the optional second parameter, as a list of
records {“name”: <name>, “type”: <type>}, where type is a Galyleo type. (GALYLEO_STRING,
GALYLEO_NUMBER, GALYLEO_BOOLEAN, GALYLEO_DATE, GALYLEO_DATETIME,
GALYLEO_TIME_OF_DAY). If the second parameter is not present, the schema is derived from
the name and column types of the dataframe, and each row of the dataframe becomes a row of the table.

Args:

dataframe (pandas dataframe): the pandas dataframe to load from schema (list of dictionaries): if
present, the schema in list of dictionary form; each dictionary is of the form {“name”: <column
name>, “type”: <column type>}

load_from_dictionary(dict)
load data from a dictionary of the form: {“columns”: [<list of schema records], “rows”: [<list of rows of
the table>]}

A schema record is a record of the form: {“name”: < column_name>, “type”: <column_type}, where
type is one of the Galyleo types (GALYLEO_STRING, GALYLEO_NUMBER, GALYLEO_BOOLEAN,
GALYLEO_DATE, GALYLEO_DATETIME, GALYLEO_TIME_OF_DAY).

Throws InvalidDataException if the dictionary is of the wrong format or the rows don’t match the columns.

Args: dict: the table as a dictionary (a value returned by as_dictionary)

Throws: InvalidDataException if dict is malformed

load_from_schema_and_data(schema: list, data: list)
Load from a pair (schema, data). Schema is a list of pairs [(<column_name>, <column_type>)]
where column_type is one of the Galyleo types (GALYLEO_STRING, GALYLEO_NUMBER,
GALYLEO_BOOLEAN, GALYLEO_DATE, GALYLEO_DATETIME, GALYLEO_TIME_OF_DAY).
All of these are defined in galyleo_constants. data is a list of lists, where each list is a row of the table.
Two conditions:

3.3. Galyleo Table 33

Galyleo, Release 0.5

(1) Each type must be one of types listed above

(2) Each list in data must have the same length as the schema, and the type of each element must match
the corresponding schema type

throws an InvalidDataException if either of these are violated

Args: schema (list of pairs, (name, type)): the schema as a list of pairs data (list of lists): the data as a list
of lists

pivot_on_column(pivot_column_name, value_column_name, new_table_name, pivot_column_values={},
other_column=False)

The pivot_on_column method breaks out value_column into n separate columns, one for each member
of pivot_column_values plus (if other_column = True), an “Other” column. This is easiest to see with
an example. Consider a table with columns (Year, State, Party, Percentage). pivot_on_column(‘Party’,
{‘Republican’, ‘Democratic’}, ‘Percentage’, ‘pivot_table’, False) would create a new table with columns
Year, State, Republican, Democratic, where the values in the Republican and Democratic columns are the
values in the Percentage column where the Party column value was Republican or Democratic, respectively.
If Other = True, an additional column, Other, is found where the value is (generally) the sum of values where
Party not equal Republican or Democratic

Args: pivot_column_name: the column holding the keys to pivot on value_column_name: the col-
umn holding the values to spread out over the pivots new_table_name: name of the new table
pivot_column_values: the values to pivot on. If empty, all values used other_column: if True, ag-
gregate other values into a column

Returns:

A table as described in the comments above

Throws: InvalidDataException if new_table_name is empty, pivot_column_name is not a name of an
existing column, or value_column_name is not the name of an existing column

to_json()
Return the table as a JSON string, suitable for transmitting as a message or saving to a file. This is just a
JSON form of the dictionary form of the string. (See as_dictionary)

Returns: as_dictionary() as a JSON string

3.4 JupyterLab Client

class galyleo.galyleo_jupyterlab_client.GalyleoClient
The Dashboard Client. This is the client which sends the tables to the dashboard and handles requests coming
from the dashboard for tables.

send_data_to_dashboard(galyleo_table, dashboard_name: Optional[str] = None)→ None
The routine to send a GalyleoTable to the dashboard, optionally specifying a specific dash-
board to send the data to. If None is specified, sends to all the dashboards. The table
must not have more than galyleo_constants.MAX_NUMBER_ROWS, nor be (in JSON form) >
galyleo_constants.MAX_DATA_SIZE. If either of these conditions apply, a DataSizeExceeded exception
is thrown. NOTE: this sends data to one or more open dashboard editors in JupyterLab. If there are no
dashboard editors open, it will have no effect.

Args: galyleo_table: the table to send to the dashboard dashboard_name: name of the dashboard editor to
send it to (if None, sent to all)

34 Chapter 3. The Galyleo Python Client

Galyleo, Release 0.5

3.5 Galyleo Exceptions

Galyleo specific exceptions

exception galyleo.galyleo_exceptions.DataSizeExceeded
Raised when the data volume is too large on a single request. The exact limitations are specified in README.md
and in galyleo_constants

exception galyleo.galyleo_exceptions.DataSizeIsZero
Raised when the data set is empty.

exception galyleo.galyleo_exceptions.Error
Base class for other exceptions.

exception galyleo.galyleo_exceptions.InvalidDataException
An exception thrown when a data table (list of rows) doesn’t match an accoompanying schema, or a bad schema
is specified, or a table row is the wrong length, or..

3.6 Galyleo Constants

Constants that are used throughout the module. These include:

1. Data types for a table (GALYLEO_STRING, GALYLEO_NUMBER, GALYLEO_BOOLEAN,
GALYLEO_DATE, GALYLEO_DATETIME, GALYLEO_TIME_OF_DAY)

2. GALYLEO_TYPES: The types in a list

3. MAXIMUM_DATA_SIZE: Maximum size, in bytes, of a GalyleoTable

4. MAX_TABLE_ROWS: Maximum number of rows in a GalyleoTable

galyleo.galyleo_constants.GALYLEO_SCHEMA_TYPES = ['string', 'number', 'boolean', 'date',
'datetime', 'timeofday']

Maximum size of a table being sent to the dashoard. Exceeding this will throw a DataSizeExceeded exception

galyleo.galyleo_constants.GALYLEO_TIME_OF_DAY = 'timeofday'
Types for a chart/dashboard table schema

galyleo.galyleo_constants.MAX_DATA_SIZE = 16777216
Maximum number of rows in a table

3.5. Galyleo Exceptions 35

Galyleo, Release 0.5

36 Chapter 3. The Galyleo Python Client

CHAPTER

FOUR

THE GALYLEO INTERCHANGE FORMAT

The Galyleo Interchange Format is the wire protocol between the galyleo module and a dashboard and the disk format
of a Galyleo Dashboard file. The extension of the file is .gd.json

4.1 Overall Structure

The Galyleo Interchange Format is simply the JSONified form of the data structure underlying a Galyleo Dashboard.
Its overall structure is:

{
"tables": <dictionary of tables>,
"filters" <dictionary of filters>,
"views": <dictionary of views>,
"charts": <dictionary of charts>,
"morphs": <list of morphs>

}

where each dictionary is of the form {<objectNMame>: <structure>}.

4.2 Morphic Properties

All physical objects (filters, charts, text, shapes, and images) have a field "morphIndex" and a substructure
"morphicProperties". The morphIndex gives the z-order of the morph; 0 is the frontmost morph, n the rearmost.
No two object should share the same morphIndex; the morphIndex should be a total order on physical objects.

The morphicProperties structure describes its physical properties. The fields of the "morphicProperties" structure
are:

Field Structure Purpose Example Note
fill Color string Color Object
position Coordinate Top-left corner position pt(128, 73) x = 128, y = 73
extent Coordinate Bounding Box width/height pt(10, 5) width: 10, height: 5
rotation real In radians, clockwise 1.57 rotated 90° clockwise
border Border object Substructure with border properties. See below.
opacity real 1 = solid, 0 = transparent 0.5 semi-transparent
Clipmode Clip enum Handle bounding box

overflow
scroll scroll bars appear

A Color Object is a four-tuple:

37

Galyleo, Release 0.5

Field Type Semantics
r 0-1 real red intensity (0 = none, 1 = full)
g 0-1 real green intensity (0 = none, 1 = full)
b 0-1 real blue intensity (0 = none, 1 = full)
a 0-1 real opactiy (0 = transparent, 1 = solid)

A Coordinate is a structure of the form ‘pt(x, y)’, where x and y are reals.

The Clip enum is one of visible, scroll, or auto. Visible is overflow the bounds, hidden is do not show the overflow,
scroll is show scrollbars

A border structure is a dictionary with a number of fields. Each field is a structure of the form {“top”: <top>, “bottom”:
<bottom>, “right”: <right>, “left”:<left>}, where <top>, <bottom>, <right>, and <left> specify the values for each
side of the structure. For example:

{ "width": {"top": 2, "bottom": 2, "right": 4, "left": 4}} specifies that the width, in pixels,
of the top and bottom borders are 2 and the width of the side borders are 4.

The fields are here. The structure refers to the structure of each of the top, bottom, right, and left components.

Field Structure Purpose Example Note
Width Real Border width in pixels 2 Must be > 0
Radius Real Side arc radius, as a

percentage of side length
10 0 = Straight side

100 = full arc
Type BorderType style of the border line dotted border composed of dots
Color Color object color of the border line

A BorderType is an enum (as a string). It is one of: none, hidden, solid, dotted, dashed, ridged, double, groove, or inset

4.3 Tables

A table is a dictionary with two entries, columns and rows. A column is a list of entries of the form {"name":
<columnName>, "type": <columnType>} where column type must be one of ‘string’, ‘number’, ‘boolean’, ‘date’,
‘datetime’, ‘timeofday’.

The rows field is a list of lists, where each list represents a row of the table. Each component list must:

• Be of the same length as the list of columns

• Be type-compliant with the list of columns. The ith entry in the list must be of the type specified in the ith entry
of the column list

4.4 Filters

A Filter is a structure of the form: {"savedFilter": <filterSpecification>, "morphIndex": <index>,
"morphicProperties": <properties>}. See the discussion above for morphicIndex and morphicProperties.
Each filter specification has a field “part”, which gives the URL for the lively.next component used to build the slider.
The filter specification is specific to the filter type, and these are given here:

• Slider

38 Chapter 4. The Galyleo Interchange Format

Galyleo, Release 0.5

Field Type Role
part part URL Url of the prototype for the filter
columnName String Name of the column this filters
minVal Number Minimum possible value for this filter
maxVal Number Maximum possible value for this filter
value Number Current value for this filter
increment number distance between consecutive values
type enum type of filter

For as Slider, the filter type is always “NumericSelect”.

• List, Dropdown

Field Type Role
part part URL Url of the prototype for the filter
columnName String Name of the column this filters
choices List List of chocies for this filter
selection Current selection for this filter
type enum type of filter

Selection is the type of the choices of the list; the filter type is always “Select”.

• Range, Double Slider

Field Type Role
part part URL Url of the prototype for the filter
columnName String Name of the column this filters
minVal Number Minimum possible value for this filter
maxVal Number Maximum possible value for this filter
min Number Current minimum of the range selected
max Number Current maximum of the range selected
increment number distance between consecutive values
type enum type of filter

The filter type is always “Range”.

4.5 Views

A View is an extremely simple structure; it has three components:

Field Type Role
table string name of the underlying table
filters list of strings Unordered list of the names of

the filters used to find the rows
columns list of strings ordered list of the names of the columns in this view

4.5. Views 39

Galyleo, Release 0.5

4.6 Charts

A Chart is also a simple structure. It has four fields:

Field Type Role/Notes
chartType enum type of the chart (chosen from

a supported chart library)
options object chart options (library specific)
viewOrTable string name of the View or Table that

is the data source for the chart
morphIndex number order of the chart in the scene

(0 = front)
morphicProperties object see above

4.7 Morphs

A morph is a simple structure. Since Morphs are not stored in dictionaries, but rather in lists, the name of the morph
is in the morph structure. Every morph has four fields:

Field Type Role
name string name of the morph
type enum morphType morph type: list below
morphIndex number z-order of the morph
morphicProperties object morphic properties

The morph types are Rectangle, Ellipse, Image, and Text. The Image morph has one additional field:

Field Type Role
imageUrl URL URL of the image (can be a data URL)

The Text morph has one additional field:

Field Type Role
textProperties object Text-specific properties

The text properties are given here:

40 Chapter 4. The Galyleo Interchange Format

Galyleo, Release 0.5

Field Type Role
fontFamily string Name of the font family
fontSize number Size of the font, in pts
fontWeight enum fontWeight Weight, fine to bold
fontStyle list of styles Weight, fine to bold
fontColor Color Object text color
padding number padding between text and

bounding box
textAlign enum alignment text alignment
textDecoration enum decoration underlined or not
lineWrapping enum wrapping whether to wrap text
fixedHeight boolean if true, bounding box height

independent of tex
fixedWidth boolean if true, bounding box width

independent of text
textString string the text string itself

• A fontWeight is one of “Fine”, “Medium”, “Bold”, “Extra Bold”

• textAlign is one of “center”, “left”, “right”, “justified”

• fontStyle is one of “normal”, “italic”, “oblique”

• textDecoration is one of “underline” or “none”

• linewrapping is one of “by words”, “anywhere”, “only by words”, “none”

4.7. Morphs 41

Galyleo, Release 0.5

42 Chapter 4. The Galyleo Interchange Format

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

43

Galyleo, Release 0.5

44 Chapter 5. Indices and tables

PYTHON MODULE INDEX

g
galyleo.galyleo_constants, 35
galyleo.galyleo_exceptions, 35
galyleo.galyleo_jupyterlab_client, 34
galyleo.galyleo_table, 31

45

Galyleo, Release 0.5

46 Python Module Index

INDEX

A
aggregate_by() (galyleo.galyleo_table.GalyleoTable

method), 31
as_dictionary() (galyleo.galyleo_table.GalyleoTable

method), 32

D
DataSizeExceeded, 35
DataSizeIsZero, 35

E
equal() (galyleo.galyleo_table.GalyleoTable method),

32
Error, 35

F
filter_by_function()

(galyleo.galyleo_table.GalyleoTable method),
32

filter_equal() (galyleo.galyleo_table.GalyleoTable
method), 32

filter_range() (galyleo.galyleo_table.GalyleoTable
method), 32

from_json() (galyleo.galyleo_table.GalyleoTable
method), 33

G
galyleo.galyleo_constants

module, 35
galyleo.galyleo_exceptions

module, 35
galyleo.galyleo_jupyterlab_client

module, 34
galyleo.galyleo_table

module, 31
GALYLEO_SCHEMA_TYPES (in module

galyleo.galyleo_constants), 35
GALYLEO_TIME_OF_DAY (in module

galyleo.galyleo_constants), 35
GalyleoClient (class in

galyleo.galyleo_jupyterlab_client), 34
GalyleoTable (class in galyleo.galyleo_table), 31

I
InvalidDataException, 35

L
load_from_dataframe()

(galyleo.galyleo_table.GalyleoTable method),
33

load_from_dictionary()
(galyleo.galyleo_table.GalyleoTable method),
33

load_from_schema_and_data()
(galyleo.galyleo_table.GalyleoTable method),
33

M
MAX_DATA_SIZE (in module galyleo.galyleo_constants),

35
module

galyleo.galyleo_constants, 35
galyleo.galyleo_exceptions, 35
galyleo.galyleo_jupyterlab_client, 34
galyleo.galyleo_table, 31

P
pivot_on_column() (galyleo.galyleo_table.GalyleoTable

method), 34

S
send_data_to_dashboard()

(galyleo.galyleo_jupyterlab_client.GalyleoClient
method), 34

T
to_json() (galyleo.galyleo_table.GalyleoTable

method), 34

47

	GETTING STARTED
	Overview
	Tutorials and Demos
	Reporting an issue
	Frequently Asked Questions

	User Guide
	Launching A Dashboard
	The Galyleo User Interface
	The Top Bar
	The Halo and the Side Bar
	The Context Menu

	Galyleo Data Architecture And Flow
	Tables
	Filters
	Views
	Charts
	Charts as Filters
	Names and Namespaces

	Using Galyleo
	The Galyleo UI
	Sending Tables to the Dashboard
	Adding a Filter
	Creating a View
	Creating a Chart

	The Galyleo Python Client
	Installation
	License
	Galyleo Table
	JupyterLab Client
	Galyleo Exceptions
	Galyleo Constants

	The Galyleo Interchange Format
	Overall Structure
	Morphic Properties
	Tables
	Filters
	Views
	Charts
	Morphs

	Indices and tables
	Python Module Index
	Index

